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In this paper, we discuss some interesting properties of the electromagnetic potentials in the quantum
domain. We shall show that, contrary to the conclusions of classical mechanics, there exist effects of poten-
tials on charged particles, even in the region where all the fields (and therefore the forces on the particles)
vanish. We shall then discuss possible experiments to test these conclusions; and, finally, we shall suggest
further possible developments in the interpretation of the potentials.

1. INTRODUCTION

N classical electrodynamics, the vector and scalar
potentials were first introduced as a convenient
iathematical aid for calculating the fields. It is true
hat in order to obtain a classical canonical formalism,
i¢ potentials are needed. Nevertheless, the funda-
i mental equations of motion can always be expressed
wadirectly in terms of the fields alone.

n the quantum mechanics, however, the canonical
nalism is necessary, and as a result, the potentials
nnot be eliminated from the basic equations. Never-
s, these equations, as well as the physical quan-
3, are all gauge invariant; so that it may seem that
1 in quantum mechanics, the potentials themselves
¢ dmve no independent significance.

i In this paper, we shall show that the above conclu-
005 are not correct and that a further interpretation
the potentials is needed in the quantum mechanics.

2. POSSIBLE EXPERIMENTS DEMONSTRATING
i THE ROLE OF POTENTIALS IN THE
' QUANTUM THEORY

- this section, we shall discuss several possible ex-
sments which demonstrate the significance of poten-
- the quantum theory. We shall begin with a
EXaniple,
#Ppose we have a charged particle inside a “Faraday
et connected to an external generator which causes
(% Potential on the cage to alternate in time. This will
= 0 the Hamiltonian of the particle a term V(x,f)
W\ 18, for the region inside the cage, a function of
- In the nonrelativistic limit (and we shall

assume this almost everywhere in the following dis-
cussions) we have, for the region inside the cage,
H=Hy+V(!) where H; is thec Hamiltonian when the
generator is not functioning, and V())=ep(s). If
vo(x,8) is a solution of the Hamiltonian H,, then the
solution for H will be

Y=o iSH, S= f vd,

which follows from

W W )
th—= (ih—g-l-\!'o—- e Sh=[Ho+ V() =Hy.
ot al of

The new solution differs from the old one just by a
phase factor and this corresponds, of course, to no
change in any physical result.

Now consider a more complex experiment in which a
single coherent electron beam is split into two parts and
each part is then allowed to enter a long cylindrical
metal tube, as shown in Fig. 1.

After the beams pass through the tubes, they are
combined to interfere coherently at F. By means of
time-determining electrical “shutters” the beam is
chopped into wave packets that are long compared
with the wavelength A, but short compared with the
length of the tubes. The potential in each tube is deter-
mined by a time delay mechanism in such a way that
the potential is zero in region I (until each packet is
well inside its tube). The potential then grows as a
function of time, but differently in each tube. Finally,
it falls back to zero, before the electron comes near the
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F1c. 1. Schematic experiment to demonstrate interference with
time-dependent scalar potential. 4, B, C, D, E: suitable devices
to separate and divert beams. W;, Wa: wave packets. My, M,:
cylindrical metal tubes. F: interference region.

other edge of the tube. Thus the potential is nonzero
only while the electrons are well inside the tube (region
II). When the electron is in region III, there is again no
potential. The purpose of this arrangement is to ensure
that the electron is in a time-varying potential without
ever being in a field (because the field does not penetrate
far from the edges of the tubes, and is nonzero only at
times when the electron is far from these edges).

Now let ¢(x,0) =¢1°(x,/)+¢-"(x,f) be the wave func-
tion when the potential is absent (¥," and s repre-
senting the parts that pass through tubes 1 and 2,
respectively). But since V' is a function only of {
wherever  is appreciable, the problem for each tube
is essentially the same as that of the FFaraday cage. The
solution is then

Y=y e SuA e iSih

us‘[:tﬂf(p[df, ngefqb‘z(ﬂ.

It is evident that the interference of the two parts at
I’ will depend on the phase difference (S;—Ss)/%. Thus,
there is a physical effect of the potentials even though
no force is ever actually exerted on the electron. The
effect is evidently essentially quantum-mechanical in
nature because it comes in thc phenomenon of inter-
ference. We are therefore not surprised that it does not
appear in classical mechanics.

From relativistic considerations, it is easily seen that
the covariance of the above conclusion demands that
there should be similar results involving the vector
potential, A.

The phase difference, (S1—S2)/%, can also be ex-
pressed as the integral (e/%)# ¢di around a closed
circuit in space-time, where ¢ is evaluated at the place
of the center of the wave packet. The relativistic gener-
alization of the above integral is

Flata)
h c >

where the path of integration now goes over any closed
circuit-in space-time.

As another special case, let us now consider a path
in space only (!=constant). The above argument

where
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Fic. 2. Schematic experiment to demonstrate mter[
with time-independent vector potential.

suggests that the associated phase shift of the el ctrop
wave function ought to be N

AS/h= it fA-dx,

where FA-dx= fH-ds=¢ (the total magnetic flm
inside the circuit).
This corresponds to another experimental mtuatia
By means of a current flowing through a very closely
wound cylindrical solenoid of radius R, center at ;_'_
origin and axis in the z direction, we create a magneti
field, H, which is essentially conﬁned within the sole-
noid. However, the vector potential, A, evidently,
cannot be zero everywhere outside the solenoid, because
the total flux through every circuit containing th
origin is equal to a constant :

¢g=fH-dS=fA-dx-

To demonstrate the effects of the total flux, we begm,
as before, with a coherent beam of electrons. (But now
there is no need to make wave packets.) The beam is }
split into two parts, each going on opposite sides of thes
solenoid, but avoiding it. (The solenoid can be shielded
from the electron beam by a thin plate which casts t'
shadow.) As in the former example, the beams 2
brought together at F (Fig. 2).

The Hamiltonian for this case is

_[P—(e/0AT:

2m

In singly connected regions, where H=VXA=0, we
can always obtain a solution for the above Hamiltonian
by taking Y=y *S'", where ¥, is the solution when
A=0 and where VS/A= (¢/c)A. But, in the expenme
discussed above, in which we have a multiply connecte
region (the region outside the solenoid), t{zoe"‘f' i
non-single-valued function' and therefore, in g
not a permissible solution of Schrﬁdmger s eq
Nevertheless, in our problem it is still possible to
such solutions because the wave function splits i
two parts y=y1+ys, where ¥, represents the beam

! Unless ¢po=mhc/e, where » is an integer.



s side of the solenoid and ¢ the beam on the opposite
de. Each of these beams stays in a simply connected
wion. We therefore can write

V=P le SR Po=y e 5 h,

ghere Sy and S are equal to (¢/c) S"A-dx along the
aths of the first and second beams, respectively. (In
ec. 4, an exact solution for this Hamiltonian will be
$iven, and it will confirm the above results.)

" The interference between the two beams will evi-
dently depend on the phase difference,

(S1—S2)/h= (e/hc)fA-dxz (e/ he)do.

" This effect will exist, even though there arc no magnetic
forces acting in the places where the electron beam
" In order to avoid fully any possible question of
fontact of the electron with the magnetic field we note
our result would not be changed if we surrounded
‘solenoid by a potential barrier that reflects the
fectrons perfectly. (This, too, is confirmed in Sec. 4.)
' It is easy to devise hypothetical experiments in which
e vector potential may influence not only the inter-
ence pattern but also the momentum. To see this,
Ronsider a periodic array of solenoids, each of which is
ed from direct contact with the beam by a small
. This will be essentially a grating. Consider first
difiraction pattern without the magnetic field, which
have a discrete set of directions of strong con-
e interference. The effect of the vector potential
be to produce a shift of the relative phase of the
function in different elements of the gratings. A
sponding shift will take place in the directions,
therefore the momentum of the diffracted beam.

¥

' 3. A PRACTICABLE EXPERIMENT TO TEST FOR
'HE RFFECTS OF A POTENTIAL WHERE
" THERE ARE NO FIELDS

yet no direct experiments have been carried out
i confirm the effect of potentials where there is no
It would be interesting therefore to test whether
ts actually exist. Such a test is, in fact, within
ge of present possibilities.* Recent experiments?®*
icceeded in obtaining interference from electron
that have been separated in one case by as much
B0.8 mm.? It is quite possible to wind solenoids which
B smaller than this, and therefore to place them
1 the separate beams. Alternatively, we may
localized lines of flux of the right magnitude (the

t. Chambers is now making a prelimin experimental

 of this question at Bristol. SRR S

farton, Phys, Rev. 85, 1057 (1952); 90, 490 (1953).
impson, and Suddeth, Rev. Sci. Instr. 25, 1099 (1954).

ollenstedt, Naturwissenschaften 42, 41 (1955); G.

dt and H. Ditker, Z. Physik 145, 377 (1956).
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magnitude has to be of the order of ¢g= 2xch/e~4X1077
gauss cm?) by means of fine permanently magnetized
¢“whiskers”.5 The solenoid can be used in Marton’s
device,? while the whisker is suitable for another experi-
mental setup® where the separation is of the order of
microns and the whiskers are even smaller than this.

In principle, we could do the experiment by observing
the interference pattern with and without the magnetic
flux. But since the main effect of the flux is only to
displace the line pattern without changing the interval
structure, this would not be a convenicnt experiment
to do. Instead, it would be easier to vary the magnetic
flux within the same exposure for the detection of the
interference patterns. Such a variation would, according
to our previous discussion, alter the sharpness and the
general form of the interference bands. This alteration
would then constitute a verification of the predicted
phenomena.

When the magnetic flux is altered, there will, of
course, be an induced clectric ficld outside the solenoid,
but the effects of this field can be made negligible. For
example, suppose the magnetic flux were suddenly
altered in the middle of an exposure. The electric field
would then exist only for a very short time, so that only
a small part of the beam would be affected by it.

4. EXACT SOLUTION FOR SCATTERING PROBLEMS

We shall now obtain an exact solution for the problem
of the scattering of an electron beam by a magnetic
field in the limit where the magnetic field region tends
to a zero radius, while the total flux remains fixed. This
corresponds to the setup described in Sec. 2 and shown
in Fig. 2. Only this time we do not split the plane wave
into two parts. The wave equation outside the magnetic
field region is, in cylindrical coordinates,

a2 190 1790 2
[--+-—_+— 2 s +ke]¢=o,
or: r dr rP\of

(1)

where k is the wave vector of the incident particle and
a=—eg/ch. We have again chosen the gauge in which
A,=0 and Ay=¢/2xr.

The general solution of the above equation 1s

V= B 0w o b b s UL,

i —0

(2)

where a,, and b,, are arbitrary constants and J,.,.(kr)
is a Bessel function, in general of fractional order
(dependent on ¢). The above solution holds only for
r> R. For r<R (inside the magnetic field) the solution
has been worked out.® By matching the solutions at
r=R it is easily shown that only Bessel functions of
positive order will remain, when R approaches zero.

b See, for example, Sidney S. Brenner, Acta Met. 4, 62 (1956).
¢ L. Page, Phys. Rev. 36, 444 (1930).
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This means that the probability of finding the particle
inside the magnetic field region approaches zero with R.
It follows that the wave function would not be changed
if the electron were kept away from the field by a barrier
whose radius also went to zero with R.

The general solution in the limit of R tending to zero
is therefore

y= Z amjim-}-alﬁima- (3)

m=20

We must then choose a., so that y represents a beam
of electrons that is incident from the right (8=0). It is
important, however, to satisfy the initial condition that
the current density,

h(P* Y —y V)
i: N ‘b ___e_A‘p*‘b,

2tm mc

4)

shall be constant and in the x direction. In the gauge
that we are using, we easily see that the correct incident
wave is Y= € *s¢~2®_ Of course, this wave function
holds only to the right of the origin, so that no problem
of multiple-valuedness ariscs.

We shall show in the course of this calculation that
the above conditions will be satisfied by choosing
am=(—1)I™tel in which case, we shall have

g= 3. (=Dl g™

It is convenient to split ¢ into the following three parts:

¢=¢l+¢'2+¢'3: wherc

=
Y= Z (— D"t ™,

m=]1

Y= 2 (—9)"“"Jmia

m_-—w

tmé
e ?

= Z (-i)m_—a]m-—aeﬁimsa

m=l

Y= (=)= a.

(3)

Now y; satisfies the simple differential equation

=
— z (—"!,)“H'“J
'  me
o J a—1 J @
— Z (_i)m'i'a i . & +1..tm8, r’zkf (6)
m=1

where we have used the well-known formula for Bessel
functions:

dJ 4 (r)/dr=3{J y1—J y11).

AND D. BOHM A

As a result, we obtain

1l e -
,aﬁ__ Z (_z)mi.}.u-{-l T4 LL im0 : ;_.:
ar’ 2 m=0 O
1 =
—— 3 (=)t .y gt
2 m’ =2 - -._h
S Z _“I-)m'+ﬂj ,+ﬂeun 5(_“”4_3—16—3) : %
5 +%(—0“U-+:—w"f
o

3/ 3’ = —i costpt3 (—1) (T an—iTo).

This differential equation can be easily mtegra.ted
give

1 =Af eir o[ J 1 —iJ % ]dr,
0

where B

—k R 5 - - fwﬂ -
=1(—g)%e i ¥,

(’-'s._:

The lower limit of the mtegration is determined by the:
requirement that when ¢’ goes to zero, Y1 also goes to
to zero because, as we have seen, y; includes Bessel !
functions of positive order only. 4

In order to discuss the asymptotic behavior of a,!q, :
let us write it as y,=A[[1—12], where

- f gir' L T —ie?T 1Y,

0 I.‘
. )3
s f giv’ ot ] o\ 1—ie®T . |

The first of these integrals is known?:

o ei[aarc sin{g/k)]
f ebr] (br)= . 0<B<k, —2<uw
] ("32_{:‘2)é |
In our cases, §=cosf, k=1, so that
gialir—|8]) eilatl) (4x—|8])
= [____ T . ] (10) ;
| sind| | sind|

Because the mtegrand is even in 6, we have written th e
final expression for the above mtcgral as a functlon a
|#| and of |sind|. Hence
11181 —jeg¥
Ii=8iu(ir—lﬂl)[ ]
|sind |

=0 for8<0,
(11)
=g 2= for 6>0,
where we have taken @ as going from —= to «. 3

7 See, for example, W. Grébner and N. Hofreiter, Inugm
(Sprmger-Vcrlag, Berlin, 1949).
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| .:'._We shall see presently that I, represents the largest we finally obtain
Lterm in the asymptotic expansion of y;. The fact that .
_ it is zero for 6<<0 shows that this part of ¢, passes e T
= (asymptotically) only on the upper side of the singu- - ) -
larity. To explain this, we note that , contains only (27) tr’(l+cosﬂ) ]

positive values of m, and therefore of the angular jat e ir’ 1
omentum. It is quite natural then that this part of ¢, } : : *]313-* cosb  (16)
goes on the upper side of the singularity. Similarly, (2m)} [ (1 —cosf)?]
‘gince according to (5) (—i)o—t e
| , D=
& V(' Be) =y (v, -0, —a), [ (2m)t [ (14cos6)2 ]t
i it follows that y» will behave oppositely to ¢, in this jo—b p—
| regard, so that together they will make up the correct + ]e""' wmeli—eY. (1)
~ incident wave. (2m)} [#' (1—cos8)? ]}

¢ Now, in the limit of # — = we are allowed to take . _ -
§  in the integrand of I, the first asymptotic term of J,,* Now adding (16) and (17) together and using (13) and

. namely J, — (2/77)} cos(r'— a— 1x). We obtain (9), we find that the term of 1/(+') in the asymptotic
- " expansion of ¢, is
i f 6" (] o 1—ieT )Y — C+D, (12) (—i) e 1e? e 1—gi
r 2(211-)5[ [ a(f')* 1+c056+i(r')5 Iucose]- -
rw o ‘”"[cos(r’—%(aﬂ)w—%w)]%(z) i e
s 13) : 5 :
- 8"’"""[cos(r’h%a—iﬂr)]i(z)i(—i)e*’.( (*’)*[(_w Al HM]' (19)
-, () \x 2(2x)} ()i 14+cos  (r) 1—cosh

Adding (18) and (19) and using (11), we finally get

= (—z’)*[ie— e cos(ma—16)
| Vit+ye— | L ]
dr’ QoL ()P} (V) cos(306)
2 ilr'—4(a+1) »—1x) ;
+e (2nr")! Feitr cosstat)  (90)
B /2\! (i)t e ; ; - :
(—) f exp(4-iz)dz I'here remains the contribution of ¢, whose asymptotic
AT/ (14-cos8)t i (14-coms) ) behavior is [see Eq. (12)]
e =7

- 2 ! gt 2 . 2\
"l"(;)fﬁu_cosa)‘j;’u_“niexp("—zzﬂdz, (14) (—a)1e1d a1 (r') — (_,-)|a|(;) cos(r’—dr—3|a|).

o ~._L'W° h.%ve put
. sl ["(14‘0059) J} and z= ["(l - cose)]*, _ eir’ e/
EIY ¢=¢1+¢2+¢3 — g—ilad+r’ cos&)_'_ g

sinra :
._ (2wir')} cos(6/2)
Ng now the well-known asymptotic behavior of (21)
€ error function,®

Collecting all terms, we find

i
=\

2. & : - where the =+ sign is chosen according to the sign of a.
i - ¢ explid’) The fi ' ion (21 he incid
g exp(iz?)dz —> - , € lirst term 1n equation (21) represents the incident
4R o, 2 a wave, and the second the scattered wave® The scat-
£ ) _ (15)  tering cross section is therefore
i . —1 exp(—ia?)
f - exp(—iz%)dz — » sinfre 1

G 9

e Jabnke and F. Emde, Tables of Fundions (Dover Pub. — 2r cos(6/2)

'8 ;qngzork, 1943), fourth edition, p. 138, ¥ In this way, we verify, of course, that our choice of the Gm for

% P- 42, Eq. (3) satisfies the correct boundary conditions,
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When a=n, where # is an integer, then ¢ vanishes.
This is analogous to the Ramsauer effect.!! ¢ has a
maximum when a=n-3.

The asymptotic formula (21) holds only when we are
not on the line #==. The exact solution, which is needed
on this line, would show that the second term will
combine with the first to make a single-valued wave
function, despite the non-single-valued character of the
two parts, in the neighborhood of #==. We shall see
this in more detail presently for the special case a=n--1.

In the interference experiment discussed in Sec. 2,
diffraction effects, represented in Eq. (21) by the scat-
tered wave, have been neglected. Therefore, in this
problem, it is adequate to use the first term of Eq. (21).
Here, we see that the phase of the wave function has a
different value depending on whether we approach the
line 8= 4= from positive or negative angles, i.e., from
the upper or lower side. This confirms the conclusions
obtained in the approximate treatment of Sec. 2.

We shall discuss now the two special cases that can
be solved exactly. The first is the case where a=n. Here,
the wave function is y=e *7¢¢® which is evidently
single-valued when o is an integer. (It can be seen by
direct differentiation that this is a solution.)

The second case is that of a=n+3.Because (i) (7)
is a closed trigonometric function, the integrals for ¢
can be carried out cxactly.

The result is

43 [ (14cosud)]
= ot cos) f exp(iz¥)dz.  (23)
VZ n

This function vanishes on the line 8==. It can be seen
that its asymptotic behavior is the same as that of Eq.
(2) with « set equal to n+3%. In this case, the single-
valuedness of ¢ is evident. In general, however, the
behavior of ¥ is not so simple, since ¢ does not become
zero on the line 0=,

5. DISCUSSION OF SIGNIFICANCE OF RESULTS

The essential result of the previous discussion is that
in quantum theory, an clectron (for example) can be
influenced by the potentials even if all the field regions
are excluded from it. In other words, in a ficld-free
multiply-connected region of space, the physical proper-
ties of the system still depend on the potentials.

It is true that all these effects of the potentials depend
only on the gauge-invariant quantity $A-dx= fH-ds,
so that in reality they can be expressed in terms of the
fields inside the circuit. However, according to current
relativistic notions, all fields must interact only locally.
And since the electrons cannot reach the regions where
the fields are, we cannot interpret such effects as due

to the ficlds themselves.

1 See, for example, D. Bohm, Quanium Theory (Prentice-Hall,
Inc., Englewood Cliffs, New Jersey, 1951),
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In classical mechanics, we recall that potentialﬁ_
cannot have such significance because the equation of =
motion involves only the field quantities thcmselvee}'t i
For this reason, the potentials have been regarded as &
purely mathematical auxiliaries, while only the field | -'
quantitles were thought to have a direct phymcal
meaning. e

In quantum mechanics, the essential difference is that #
the equations of motion of a particle are replaced by the
Schrodinger equation for a wave. This Schrodinger &
equation is obtained from a canonical formalism, whic!
cannot be expressed in terms of the fields alone, b
which also requires the potentials. Indeed, the pot
tials play a role, in Schrédinger’s equation, whi
analogous to that of the index of refration in optic
The Lorentz force [¢E+4-(e/c)vXXH] does not appear &
anywhere in the fundamental theory, but appears only &
as an approximation holding in the classical limit. If E(
would therefore seem natural at this point to propose =
that, in quantum mechanics, the fundamental physncai
entities are the potentials, while the fields are denved
from them by differentiations. b

The main ob]ectlon that could be raised agamst the =
above suggestion is grounded in the gauge lnvanancg.«
of the theory. In other words, if the potentials are &
subject to the transformation A,— 4,'=4 ,.+ﬂyb/8x,,-ff
where ¢ is a continuous scalar function, then all the
known physical quantities are left unchanged As a
result, the same physical behavior is obtained from any '__'-.._
two potentlals_ A,(x) and 4,'(x), related by the above &
transformation. This means that insofar as the poten-
tials are richer in properties than the fields, there is no 8
way to reveal this additional richness. It was therefore
concluded that the potentials cannot have any meaning,
except insofar as they are used mathematically, to &
calculate the fields.

We have seen from the examples described in this
paper that the above point of view cannot be main- &
tained for the general case. Of course, our discussion
does not bring into question the gauge invariance of
the theory. But it does show that in a theory involving
only local interactions (e.g., Schrédinger’s or Dirac’s =
equation, and current quantum-mechanical field the- =
ories), the potentials must, in certain cases, be con-
sidered as physically effective, even when there are no 8
fields acting on the charged particles.

The above discussion suggests that some further 3
development of the theory is needed. Two possnble _
directions are clear. First, we may try to formulate a &
nonlocal theory in which, for example, the electron '
could interact with a field that was a finite dlsta,nce' 3
away. Then there would be no trouble in mterpretmg
these results, but, as is well known, thcre are severe
difficulties in the way of doing this. Secondly, we may
retain the present local theory and, instead, we may -
try to give a further new interpretation to the poten=

_II -
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In other words, we are led to regard 4,.(x) as a
sical variable. This means that we must be able to
e the physical difference between two quantum
es which differ only by gauge transformation. It will
shown in a future paper that in a system containing
undefined number of charged particles (i.e., a super-
ition of states of different total charge), a new
‘Hermitian eperator, essentially an angle variable, can
" be introduced, which is conjugate to the charge density
@ and which may give a meaning to the gauge. Such
~gtates have actually been used in connection with

ELECTROMAGNETIC POTENTIALS IN
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recent theories of superconductivity and superfluidity®
and we shall show their relation to this problem in more

detail.
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