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PREFACE 

Electromagnetism is a science which is to be learned by everybody who knows some 

mathematics in ten days. Eleven days are too many. 
Why then the students in the universities study_ it for years and nevertheless all 

of them, as well as the professors who teach it in the class-rooms, look with despe­

ration at the electromagnetic phenomena, without being able to explain what is real­
ly going on there and why? A clear example for the "puzzleness" of the electromagne­
tic phenomena are the numerous papers in the AMERICAN and EUROPEAN JOURNAL OF PHY­
SICS. Such a paper is also that of John Maddox cited quite the whole in Sect. 21. 

When reading this book the reader will give the answer readily: Official electro­

magnetism is simply wrong. The, theory of relativity is wrong, the "closed current 
lines", "flux" and "propagat_ion of interaction" Faraday-Maxwell concepts are wrong. 

In electromagnetism there are only a couple of si-mple and clear formulas (as a 

matter of fact, there is only one fundamental formula, the Newton-Lorentz equation), 

deduced logically from a couple of simple axioms (see them is Sect. 2), and any ele­
ctromagnetic phenomenon is then to be calculated by the help of these simple formu­

las if one knows differential, integral and vector calculus. 
And the fundamental Newton-Lorentz equation leads logically to the violation of 

the laws of angular momentum and energy conservation, i.e., to the construction of 
machines which rotate under the action of internal forces and which produce energy 

from nothing. 
Official physics works with a wrong fundamental formula, namely with the Lorentz 

equation, consequently without the scalar magnetic field and assumes that the elec­
tromagnetic effects depend only on the relative velocities of the bodies. 

One may wonder: how was it possible that until the end of the XXth century huma­
nity has not noticed the scalar magnetic intensity and the existence of the motional­
transformer induction. I point out at the reasons for this "blindness": 1) the sca­

lar magnetic intensity is equal to· zero (with some very rare exceptions) when it is 
generated by a closed current, and 2) the induced motional and motional-transformer 
electric tensions in a closed loop are equal. And in low-acceleration electromagne­
tism official physics works predominantly with closed currents and closed loops. 

But why to narrate in the preface in a hurry that what is written calmly and in 

all detail in the book?! 
DIVINE ELECTROMAGNETISM can be read, grasped and mastered in ten days. At this 

reading the reader has to jump over some complicated calculations. One will lose 
nothing if one will not verify all steps of the mathematical speculations. All other 
"theoretical" deductions are of the most simple kind which every sophomore student 
can follow with easiness. 

If the reader would have under hand the first part of my encyclopaedic book CLAS­
SICAL PHYSICS, entitled MATHEMATICAL APPARATUS, the reading of this book can proceed 
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more quickly and calmly, as there can be found~ relevant formulas from algebra, 

trigonometry, analytical geometry, differential calculus, integral calculus, infinite 

series, differential equations, vector and tensor analysis. For this reason I do not 

attach to the present book a part dedicated to the mathematical apparatus used in it. 

I wish to note only the following. 

Every student in a technical university knows what are the differential operators 

grad, div, rot, however few of them know the fourth differential operator (v.grad), 

called "vector-gradient". I won from a friend of me 1000 AS by asserting that if 

we take five university textbooks on electromagnetism, then with surety in four of 

them we will not find the operator (v. grad). In case that in more than in one of the 

five books the operator would be found, I had to pay to the friend 5000 AS. We orde­

red the books on the library computer. The operator (v.grad) couldnot be found even 

a single time in all of them. (Asimilar bet can be won with Grassmann 's formula, 

namely I shall pay to everyone 5000 AS if by choosing arbitrarily five university 

text-books on electromagnetism, Grassmann 's formula would be found written explicit­

ly in rrore than in one.) 

Thus if one wonders why the notional-transformer induction was not revealed by 

humanity, I always retort: And if some student occasionally has observed it, how 

would he write it, if the professor has not told him that besides grad, div and rot 

there is also (v. grad). 

It is very useful to have under hand the formulas for grad, div, rot and (v.grad) 

of a product of two functions, as to deduce the relevant formula any time when one 

needs it is tedious. As I use some of these formulas often in the book, I give them 

here: 

If¢, <1>1, <1>2 , are scalar funcions and A, A1, A2 are vector functions of the coor-

dinates of the reference point, then 

grad(<1>1<1>2) = <1>1grad<t>2 + <1>2grad<l>1, 

grad{A1.A2) = (A1.grad)A2 + (A2.grad)A1 + A1xrotA2 + A2xrotA1, 

div(<l>A) = <!>divA + A.grad<!>, 

div(A1xA2) = A2.rotA 1 - A1.rotA2 , 

rot( <l>A) = <I> rotA - Axgrad<!>, 

rot(A1xA2) = (A2.grad)A1 - (A1.grad)A2 + A1divA2 - A2divA1, 

(v.grad)(<l>A) = A(v.grad<!>) + <l>(v.grad)A, 

(v.grad)(A 1xA2) = A1x(v.grad)A 2 - A2x(v.grad)A 1. 

The book is dedicated primarily to low-acceleration electromagnetism. Only Chap­

ter IV is dedicated to high-acceleration electromagnetism (radiation of electromag­

netic waves). This Chapter can be simply omitted by the persons who are not interes­

ted to learn how I solve the problems about the radiation of energy. 
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Well. Now read the book. Without fear - you are in paradise under the shadow of 

a beautiful cherry-tree. When opening your IOOuth, the cherries fall exactly in and 

the Divinity corrbs his long white beard on the nedow next to yours solving the cross­

words in the last day English press. 

And after ten days you wi 11 know electromagnetism much better than any other pro­

fessor in the world. 

Let ne make at the end an important remark concerning the nasty and disgusting 

problem about the neasuring systems. In fi!Y address "Marinov to the world's scienti­

fic conscience"( 45 ) I wrote: "In the damned system SIB and H are, my God!, two 

q uant iti es with different dimensions , so that even the grandchildren of our gran ct­

children will curse and swear at us when studying electromagnetism." One of the nost 

important reasons that electromagnetism cannot be understood by the students is the 

damned measuring system SI. If the electromagnetic units of measurement (ampere, 

volt, etc.) had been iri,troduced on the basis of the {;auss system, the mental disor­

ders between the students (and the professors!) of the high technical schools would. 

be with 35% less. 

But we have this damned system SI and cursing and swearing we must live with it, 

as every European who comes to the Island with his own car has to drive on the left 

and curse and swear ... 

dedicated a whole Chapter (Chapter V) to the measuring systems to save my rea­

ders from mental disorders, as such a chapter cannot be found in the current text­

books (I can make the sane bet as above!). Read this chapter attentively, and then 

have always under hand Table 43.2 jumping from the Gauss system to the SI system 

(and vice versa) without thinking too much. Think then theoretically in the Gauss 

system, as I do in Chapters I-IV, and make the numerical calculations for the expe­

riments in the SI system, as I do in Chapter VI. 

!tali ans say: Gua.da.gna. a. Mle.a.no e. 1.,pe.ncu a. Na.pol-<-. 

Graz, July 1993 Stefan MARINOV 

Hofe rfi n de r, 

Oberstallknecht von Niederschi:ickl 



Il Signor GENIO TEORICO e la Signorina ESPERIMENTALINA 
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1. AXIOMATICS 

1. INTRODUCTION 

As a result of my experimental and theoretical work in the last twenty years, I 

firmly established that space and time are absolute categories, such as defined by 

Newton and conceived intuitively by everybody during one's childhood and student life. 

The crucial experiments supporting this viewpoint are my "rotating axle" experi­

ments(l-6), by means of which for the first time in history I succeeded in measuring 

the Earth's absolute velocity in a laboratory. 

Proceeding from the absolute space-time concepts, I tried to build all of CLASSI­

CAL (i.e., non-quantum and non-statistical) PHYSICS on a firm and clearly defined 

axiomatical basis. I established that this axiomatical basis can by chosen in a ve­

ry simple, intuitively comprehensible manner, and that all fundamental equations 

in classical physics can be then obtained by plain and rigorous mathematical specu­

lations. 

The internal logic of the theory impelled me to introduce axiomatically, by ana­

logy with the magnetic energy, a colllJanion to the gravitational energy which I cal­

led MAGRETIC ENERGY (Heaviside first has done this). Until now human experience has 

not established the existence of such a type of energy, but neither has it shown 

whether such an energy should not exist. Thus the magretic energy is a hypothetical 

notion. Nevertheless, I hope that in future, when experimental techniques will of­

fer the necessary possibilities, the existence of magretic energy might be revealed. 

I propose an aether-type model for light propagation, i.e., I assume that light 

propagates with a constant velocity along any direction only in absolute space. How­

ever, the "aether" is not some medium at rest in absolute space in which light pro­

pagates like sound in air. I firmly defend the corpuscular (Newton) 11Ddel of light 

propagation, rejecting the wave (Huyghens-Fresnel) model, so that I call my model 

for 1 i ght propagation NEWTON-AETHER MODEL. 

Within effects of first order in ·v;c (Vis the absolute velocity of the reference 

frame considered, c is the velocity of light in absolute space or the to-and-fro 

velocity in any inertial frame), all physical and light propagation phenomena can 

be rightly described by the traditional "Newtonian" mathematical apparatus, and 

thus within this accuracy the Galilean transformation is adequate to physical rea­

lity. I call this the low-velocity mathematical approach (LOW-VELOCITY PHYSICS). 

The low-velocity mathematical apparatus wrongly describes the effects of second 

(and higher) order in V/c. For a correct explanation of these effects, the Newton­

aether model of light propagation must be replaced by the MARINOV-AETHER MODEL. 

The high-velocity mathematical approach (HIGH-VELOCITY PHYSICS) based on the Lo­

rentz transformation and on its companion the Marinov transformation (both of which 

can be considered as mathematical presentation of the Marinov-aether character of 
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light propagation), as well as on the 4-dimensional mathematical formalism of Min­

kowski, rightly describes the effects of any order in V/c. ( 3 , 5 ,7) However, the Lo­

rentz transformation and the 4-dimensional mathematical apparatus must be treated 

from an absolute point of view, as is done in ll1Y absolute space-time thepry_( 5 ) If 

they are treated and manipulated from a "relativistic" point of view, as is done in 

the Einstein approach to the theory of relativity, results inadequate in regard to 

physical reality are obtained. The errors to which the theory of relativity leads 

are within effects of first order in V/c. 

In my approach I assume axiomatically (see the second axiom in Sect. 2) that the 

velocity of light, propagating along the direction n in absolute space and along the 

direction n' in a frame moving with a velocity Vis absolute space, is equal not to 

c' = c{l - (n'xV;c}2} 1/ 2 - n'.V = c(l - 2n.V/c + v2;c 2 ) 112 , (1.1) 

as it must be according to the traditional Newtonian concepts but to 

c' = c(l - v2;c2)1/2 

1 + n'.V/c 

c(l - n.V/c) 
( 1 _ v2 / c2 ) 1/ 2 · 

( 1.2) 

These formulas differ one from another only within terms of second order in V/c. 

In this book I shall not present motivations for the substitution of formulas (1.1) 

by the formulas (1.2) and the reader can find such motivations in Refs. 3,5,7,8. Ac­

cepting axiomatically the validity of formulas (1.2), I remove from the way to the 

scientific truth a terribly heavy stone which has for about a century tormented hu­

manity. I showed( 3,s,7 ,B) that either one has to introduce the peculiar Marinov-ae­

ther character of light propagation into the theory, or one should be unable to 

bring all effects observed in space-time physics under one hat. 

Formula (1. 1) shows that the time which a light pulse needs to cover a distance 

din the moving frame is equal to llt 11 = 2d/(1 - v2;c2) when this distance is paral­

lel to the frame's motion and to lltl = 2d/(1 - v2;c 2) 1/ 2 when it is perpendicular to 

the frame's motion. Formula (1.2) shows that in both these cases the time should be 

the same lit 11 = llt 1 = 2d/(1 - V2;c 2) 1/ 2 and with the factor (1 - V2;c 2t 1/ 2 larger 

than the time needed to cover the same distanced when it is at rest in absolute 

space. (Take into account that when dis parallel to the frame's motion n' .V = n.V = 

V, {n'xV) 2 = O, and when dis perpendicular to the frame's motion n' .V = O, n.V = 
v2;c, (n'xV) 2 = v2. A LIGHT CLOCK sends successively light pulses to and fro. 

If we define the time unit in the ABSOLUTE (attached to absolute space) FRAME and 

in the RELATIVE (moving) FRAME by the time which light needs to cover a certain dis­

tanced to and fro, we obtain that the time unit in the moving frame {which I call 

PROPER TIME UNIT) is larger by the factor ( 1 - v2;c 2r112 than the time unit in the 

rest frame (which I call UNIVERSAL TIME UNIT). Thus the Marinov-aether character of 

light propagation automatically introduces the CLOCK RETARDATION which I consider 

(and I show this(3, 5 )) to be a physical effect; thus I do not use the notion "TIME 

DILATION". 



- · 15 -

One may add that formulas (1.2) can be considered as introducing also automati­

cally the "LENGTH CONTRACTION", but I firmly defend the opinion that the "length 

contraction" is not a physical effect and appears in the mathematical apparatus on­

ly because of the peculiar Marinov-aether character of light propagation. 

I showed( 3 , 5 , 7 .a) that if the isotropy of the to-and-fro light velocity in the 

moving frame will be coupled with the principle of relativity, the Lorentz transfor­

mation should be obtained, while if it will be coupled with the existence of absolute 

space, the Marinov transformation formulas should be obtained. My experiments(l- 5 ) 

demonstrated that the Marinov transformation is adequate to physical reality and I 

showed( 3, 5 , 7 ,a) how the Lorentz transformation is to be reconciled with ph;sical re­

ality, i.e., with the space-time absoluteness. I showed also( 3 ,5 •7 ,a) the fundamen­

tal difference between the LORENTZ and MARINOV INVARIANCES which can be briefly de­

lineated as follows: 

If there is an isolated material system of severa-l interacting particles, the 

most natural and simple approach is to consider the motion of these particles in a 

frame attached to absolute space. Then we can make the fol lowing two transformations: 

1) To move the whole system with a velocity Vin absolute space and to consider 

the appearing in the system physical phenomena further in absolute space. 

2) To leave the system untouched and to consider the appearing in the system phe­

nomena in another (relative) frame which moves with a velocity Vin absolute space. 

According to the principle of relati_vity, these two transformations must lead to 

identical results for~ phenomena which can be observed in the system, as accor­

ding to this principle an absolute space does not exist and if there is a system 

and observer, it is immaterial whether the observer moves with respect to the system 

or the system moves with respect to the observer. 

According to my absolute space-time theory, the two mentioned transformations do 

not lead to identical results, although many of the observed phenomena remain iden­

tical, first of all the low-velocity mechanical phenomena, but not the electromagne~ 

tic and high-velocity mechanical phenomena. 

When we wish to obtain results adequate to physical reality, we have to use the 

Lorentz transformation only when making the first of the above transformations. In 

such a case the "moving frame" K' in which we first consider the material system 

(usually if the system represents a single particle, it is at rest in K', and if the 

system has many particles, its center of mass is at rest in K') and the "rest frame" 

Kin which we then consider the system (and in which the single particle or the cen­

ter of mass of the system move with a velocity V) is one and the same physical frame 

attached to absolute space. Thus it is not the observer who has changed h,is velocity 

with respect to absolute space, but the system has changed its velocity from zero to 

V with respect to absolute space. As the velocity of light in absolute space is c 

along any direction, then in the "moving frame" K' and in the "rest frame" Kit will 

preserve its constant value along all directions because, I repeat, Kand K' are, as 
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a matter of fact, one and the same physical frame. When making such a kind of trans­

formation we must always replace the 4-dimensional scalars observed in K' by their 

4-dimensional analogues in K, i.e., we have to work with the Lorentz invariant quan­

tities. 

When making the second of the above transformations, we have to use the Marinov 

transformation. In such a case the frame K is attached to absolute space and the mo­

ving frame K' moves with a velocity Vin absolute space, i.e., those are two diffe­

rent physical frames, whilst the observed system has always the same character of 

motion with respect to absolute space. Now the velocity of light will be c in the 

rest frame K, but it will be direction dependent in the moving frame K'. When making 

such a kind of transformation we have to replace the 3-dimensional scalars observed 

in K by their 3-dimensional analogues in K', keeping in mind that the Marinov inva­

riant quantities as the space and time energies have the same values in Kand K'. 

When Kand K' are two inertial frames, it is not easy to find experiments revea­

ling the difference between the above two transformations and I was the first man 

constructing such experiments (such successful experiments!). However when K' is a 

rotating frame, then it is of cardinal importance whether the observed system rota­

tes with respect to the observer or the observer rotates with respect to the system. 

Being unable to understand the difference between the first and second transforma­

tions for inertial frames, the relativists were unable to understand many substan­

tial differences for the case where Kand K' rotate one with respect to the other. 

Moreover ideal inertial frames do not exist because for any frame moving with an 

enough constant velocity in absolute space always a far enough center can be found, 

so that the motion of the frame can be considered as rotation about this center. 

This theorem is similar to Archimedes' theorem that for any big enough number always 

a number which is bigger can be found. 

2. THE AXIOMS OF CLASSICAL PHYSICS 

The fundamental undefinable notions (concepts) in physics are: 

a) space, 

b} time, 

c) energy (matter). 

I consider the notions "MATTER" and "MATERIAL SYSTEM" as synonyms of the notions 

ENERGY and ENERGY SYSTEM. 

An IMAGE (MODEL} OF A MATERIAL SYSTEM is any totality of irrprints (symbols} w.ith 

the help of which, if corresponding possibilities and abilities are at our disposal, 

we can construct another system IDENTICAL with the given one. We call two material 

systems identical if their influence on our sense-organs (directly, or by means of 

other material systems) is the same. We call two images of a given material system 

EQUIVALENT if with their help identical systems can be constructed. An image is 

ADEQUATE TO PHYSICAL REALITY if the impact of the considered system on our sense-
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organs, as predicted from this image, is the sanE as the actual il11)act. 

A material system is called ISOLATED if it can be represented by a model indepen­

dent of other material systems. 

_We imagine space as a continuous, limitless, three-dinEnsional totality of space 

points. The different Cartesian franEs of reference {these are geometrical, i.e., 

mathematical concepts) with which we represent space may have various relations with 

respect to each other. Depending on their relationship to each other, any pair of 

Cartesian frames of reference will belong to one or more of the following three clas­

ses: 

1. Frames with different origins. 

2. Frames whose axes are mutually rotated. 

3. Frames with differently oriented (or reflected) axes (right or left orienta­

tion). 

The fundamental properties of space may be define.ct as: 

1. HOMOGENEITY. Space is called homogeneous if considering any material system in 

any pair of space frames of the first class, we always obtain equivalent images. 

2. ISOTROPY. Space is ca 11 ed isotropic if· considering any material sys tern in any 

pair of space frames of the second class, we always obtain equivalent images. 

3. REFLECTIVITY. Space is called reflective if considering any material system in 

any pair of space frames of the third class, we always obtain equivalent images. 

We imagine time as continuous, limitless, one-dimensional totality of moments 

(time points). Here frames of reference for tirre of the first and third class oniy 

can be constructed, i.e., time frames with different origins and oppositely directed 

axes. The fundamental properties of time may be defined as: 

1. HOMOGENEITY. Time is called homogeneous if considering any material system in 

any pair of tinE frames of the first class, we always obtain equivalent images. 

2. REVERSIBILITY. Time is called reversible if considering any material system 

in any pair of time frames of the third class, we always obtain equivalent images. 

The assertions of ITTY first (for space), second __ (for time), third (for energy), 

fourth (for the first type cif space energy), fifth (for the second type of space 

energy), sixth (for time energy), seventh (for the first type of space-time energy), 

eighth ( for the second type of space-time energy) and ninth ( for conservation of 

energy) axioms are the following: 

AXIOM I. SPACE is homogeneous, isotropic and reflective. The unit of measure­

rrent L for distances (i.e., space intervals along one of the three dimensions in 

space) has the property of length and may be chosen arbitrarily. ABSOLUTE SPACE is 

the reference frarre in which the world as a whole is at rest. 

AXIOM II. TIME is homogeneous. The unit of measurement T for time intervals has 

the property of time and is to be established from the following synt>olical relation· 

L/T = c, (2 .1) 

where c is a universal constant which has the property of velocity (length divided 



- 18 -

by time). Light propagates in absolute space with this velocity which is called UNI­

VERSAL LIGHT VELOCITY. In a frame noving with a velocity Vin absolute space the two­

way light velocity along any arbitrary direction, called PROPER LIGHT VELOCITY, is 

c
0 

= c/( 1 - v2;c2)112, (2.2) 

while the _one-way light velocity along a direction concluding an angle e' with V, 

called PROPER RELATIVE LIGHT VELOCITY, is 

c ~ = c/ ( 1 + V cos e ' / c) . ( 2. 3) 

Thus c' = c~{l - v2;c 2) 112 must be called UNIVERSAL RELATIVE LIGHT VELOCITY. The 

time unit in any frame is defined by the period for which light covers a half-length 

unit to and fro. Hence the universal time intervals are measured on light clocks 

which are at rest in absolute space, while the proper time intervals are measured 

on light clocks which are at rest in the moving frame. 

AXIOM III. All individually different material systems can be characterized by a 

uniform (i.e., having the same qualitative character) quantity which is called ENER­

GY and which can only have different numerical value for different material systems. 

The unit of measurement E for energy has the property .of energy and is to be estab­

lished from the following syrrbolical relation 

ET = h, (2.4) 

where his a universal constant which has the property of ACTION (energy multiplied 

by time) and is called PLANCK CONSTANT. If we assume the numerical values of c and 

h to be unity, then the corresponding units for length, time and energy are called 

NATURAL UNITS OF MEASUREMENT. MATERIAL POTNTS (or PARTICLES) are those points in 

space whose energy is different from zero. Every particle is characterized by a pa­

rameter m, called UNIVERSAL MASS, whose dimensions and numerical value are to be es­

tablished from the relation 

e = mc2 , (2. 5) 

where e is the energy of the material point when it is at rest in absolute space and 

is called UNIVERSAL {TIME) ENERGY. When a particle moves in absolute space its ener­

gy is called PROPER {TIME) ENERGY and has two forms: the MARINOV TIME ENERGY (or SE­

COND PROPER TIME ENERGY) and the HAMILTON TIME ENERGY (or FIRST PROPER TIME ENERGY) 

e
00 

= mc~/2 = mc2/2(1 - v2;c 2), e
0 

= mcc
0 

= mc2/(l - v2;c2) 1/ 2 = m
0

c2 , (2.6) 

where the quantity m
0 

is cal led PROPER MASS. Other i1TTportant characteristics of a 

material point are the quantities 

and p = me ( p 
O 

= m
0 

c) , ( 2. 7) 

called, respectively, the UNIVERSAL (PROPER) SPACE MOMENTUM and the UNIVERSAL (PRO­

PER) TIME MOMENTUM. Furthermore every particle is also characterized by the quanti­

ties 
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Jc = p/h = mv/h (Jc
0 

= P/h = ffioV/h) and i = p/h = mc/h (1<0 P/h = m0c/h}, (2.8) 

called, respectively, the UNIVERSAL (PROPER) WAVE VECTOR and the UNIVERSAL (PROPER) 
WAVE SCALAR. Two material points can be discerned one from another if the space dis­
tance between them (at a given moment) is nnre than their PROPER WAVE LENGTH A0 = 

l/K0 , or the time interval between their passages through a given space point is 
more than their PROPER PERIOD , 0 = l/c'k0. If these conditions are not fulfilled, the 
particles interfere (the phenomenon "interference" will be not considered in this 
book)."' 

AXIOM IV (NEWTON'S LAW). The individual image of a material system in space is 
given by the value of its PROPER GRAVITATIONAL ENERGY Ug. The energy Ug of two par­
ticles is proportional to their proper time rromenta p01, ii02 divided by c and inver­
sely proportional to the distance r between them 

- - 2 
Ug = - YP01Po2/c r = - Y~olmo2/r. (2.9) 

The coupling constant y, called the GRAVITATIONAL CONSTANT, shows what part of the 
energy unit represents the gravitational energy of two unit masses separated by a 
unit distance. The mass me of an important class of elementary (non-divisible) par­
ticles, called electrons, is a universal constant called the MASS OF ELECTRON. If 
one works with natural units and assumes the numerical value of the electron mass 
to be unity, i.e., me= 1 E L-2T4, then the gravitational constant has the value 
y = 2. 78xlo-46 E-1L5T-4. If taking in (2.9) not the proper but the universal masses, 
Ug is called UNIVERSAL GRAVITATIONAL ENERGY. 

AXIOM V (COULOMB'S LAW). In addition to the mass parameter, every particle is 
characterized by a parameter q, called the ELECTRIC CHARGE. The quantities 

j = qv, j = qc (2.10) 

. are called, respectively, the SPACE CURRENT and the TIME CURRENT. The individual 
image of a material system in space, in addition to its gravitational energy Ug' is 
also given by the value of its ELECTRIC ENERGY Ue. The energy Ue of two particles 
is proportional to their time currents }1, }2 divided by c and inversely proportio­
nal to the distance r between them 

- - 2 Ue = jlj2/coc r = qlq/cor. (2.11) 

The coupling constant 1/c0 is called the INVERSE ELECTRIC CONSTANT and £ 0 - the 
ELECTRIC CONSTANT; the inverse electric constant shows what part of the energy unit 
represents the electric energy of two unit charges separated by a unit distance. The 

"'The recent experiments of F. Louradour et al. (Am. J. Phys., 61, 242 (1993)) have 
shown that two extremely short light waves, practically photons concentrated in a 
single space-time point, can interfere when these photons are radiated from diffe­
rent sources and have different frequencies, i.e., periods, the only condition be­
ing that at a given moment they cross the same space point. Thus the conclusion of 
certain physicists that a photon can interfere with itself is an absurdity. Any par­
ticle interferes with any other particle, but only at certain. conditions this inter-
ference can be observed. · 



- 20 -

dimensions of the electric charge q and of the electric constant e:
0 

are to be estab­

lished from (2.11), thus the dimensions of one of them are to be chosen arbitrarily. 

The electric charge of every elerrentary particle is equal to qe, - qe, or O, where 

qe is_a universal constant called THE CHARGE OF ELECTRON. If we work with natural 

units and assume the numerical value of the electron charge to be unity, i.e., q! = 

1 EL, then the electric constant is dimensionless and has the numerical value e:
0 

= 

861. 

AXIOM VI. The individual image of a material system in time is given by the value 

of its proper tirre energy E
0

• The proper time energy of one particle e
0 

depends on 

its absolute velocity v, i.e., on its velocity with respect to absolute space; the 

change (the differential) of the proper time energy is proportional to the scalar 

product of the velocity and the differential of the velocity, the mass of the par­

ticle being the coupling constant, 

de
0 

= mv.dv. (2.12) 

AXIOM VII (MARINOV'S LAW). The individual image of a material system in space and 

time is given by the value of its PROPER MAGRETIC ENERGY w
9

• The energy w
9 

of two 

particles is proportional to the scalar product of their proper space JOOmenta p01 , 

p02 divided by c and inversely proportional to the distance r between them 

2 2 Wg = yp 01 .p02/c r = ym01 m02v1.v2/c r. (2.13) 

The coupling constant y, called the MAGRETIC CONSTANT, is equal to the gravitational 

constant. If taking in (2.13) not the proper but the universal masses, Wg is called 

UNIVERSAL MAGRETIC ENERGY. 

AXIOM VIII (NEUMANN'S LAW). The individual image of a material system in space 

and time, in addition to its magretic energy Wg, is also given by the value of its 

MAGNE_TIC ENERGY We. The energy We of two particles is proportional to the scalar pro­

duct of their space currents j 1, j 2 divided by c and inversely proportional to the 

distance r between them 

W . ·;2 /2 e = - lloJ1•J2 c r µoqlq2vl.v2 c r. 

The coupling constant µ
0

, called the MAGNETIC CONSTANT, is equal 

tri c constant. 

(2.14) 

to the inverse elec-

AXIOM IX. FULL ENERGY Hof a material system is called the sum of the time energy 

E
0 

and the space energy U. TOTAL ENERGY His the full energy minus the space-time 

energy W. The numerical value of the total energy of an isolated material system re-

mains constant in ti me, that is 

dH = 0, i.e. , dE
0 

+ dU - dW = 0. ( 2. 15) 

NOTE. If we take a general look at equations (2.9), (2.11), (2.13) and (2.14), 

we see that it is JOOre reasonable to choose as parameters of the space and space­

time energies in gravimagretism and electromagnetism not the masses and the electric 

charges of the particles but their MARINOV MASSES and MARINOV ELECTRIC CHARGES 

m"' = m/c, q"' = q/c. (2.16) 
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With the Marinov masses and charges the space and space-tine energies of two parti­

cles will be written 
* * 2 - ymo1mo2c /r, 

* * 2 qlq2c /£or, 

In the CGS-system of units - see Chapter V - we take £
0 

= 1/µ
0 

= 1. 

3. TRANSFORMATION OF COORDINATES 

(2. 17) 

(2. 18). 

For the sake of sirrplicity, the space georretry in this section will be one-dirren­

sional. 

If in the frarre K', rooving with the velocity V with respect to frarre K, the ra­

dius vector of a certain point, which is at rest in K', is x', then its radius vec­

tor with respect to frarre K wi 11 be 

X = XI + Vt, ( 3.1) 

where tis the (absolute) tirre interval between the initial roorrent when the origins 

of both frarres have cotncided and the moment of observation. This is the DIRECT GA­

LILEAN TRANSFORMATION. The INVERSE GALILEAN TRANSFORMATION wi 11 be 

XI = X - Vt. ( 3.2) 

The Galilean transformation seem; to be in conformity with the PRINCIPLE OF RELA­

TIVITY as by consi derj ng either frarre K or frarre KI attached to absolute space no­

thing changes in the transformation formulas. I shall, however, add that since the 

tirre of Copernicus humanity does not make the error, when considering an object roo­

vi ng with respect to the fixed stars, to consider the object at rest and the stars 

rooving. The Galilean transformation under this Copernican insight is, obviously, in 

conformity with the Newton-aether character of light propagation. 

The Mari nov-aether character of 1 i ght propagation introduces changes into the Ga­

lilean transformation formulas. Taking into account the Marinov-aether character of 

light propagation, I showed( 3,5 , 7) 'that: 

i) By assuming the principle of relativity as valid, one obtains the Lorentz tran­

sformation formulas. 

2) By assuming the principle of relativity as not valid, one obtains the Marinov 

transformation formulas. 

As these deroonstrations are tirre and space consuming, I shall not give them here 

(see Refs. 3, 5 or 7), and I shall only give the formulas for the: 

1. DIRECT AND INVERSE LORENTZ TRANSFORMATIONS 

x' = (x - Vt)/(1 - v2;c2) 112, t' = (t - xV/c2)/(l - v2;c2) 112: (3.3} 

x = (x' + Vt')/(1 - v2;c 2 )112, t = (t' + x'V/c 2 )/(1 - v2;c 2)112. (3.4) 

2. DIRECT AND INVERSE MARINOV TRANSFORMATIONS 
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x' = (x - Vt)/(1 - v2Jc2 )112, 

x = x'(l - v21c2i 112 
+ Vt /(1- v21c2 i 112, 

. 0 

t
0 

= t(l - v21c2) 112, 

t = to/(1 - V2/c2)1/2_ 

(3.5) 

(3.6) 

One sees that the Lorentz transformation formulas are entirely symmetric and thus 

one can attach either frame K to absolute space (in this case light velocity will be 

isotropic in Kand anisotropic in K') or frame K' (in this case light velocity will 

be isotropic in K' and anisotropic in K), while the Marinov transformation formulas 

are not symmetric, so that frame K is to be considered attached to absolute space 

and the velocity of light is isotropic in Kand anisotropic in K'. 

The time "coordinates" in the Lorentz transformation do not present real physi-

cal time, as in their transformatjon formulas space coordinates do appear. I call 

such time RELATIVE (or LORENTZ TIME}. The time in the Marinov transformation is real 

measurable physical time. There is only the stipulation that the time units used in 

frames moving with different velocities with respect to absolute space are different, 

as in rey second axiom I chose the time unit in any frame to be equal to the duration 

which a light pulse takes to cover a half-unit distance to and fro. I showed( 3 ,5 ) 

that, as in any periodic phenomenon, independent of its character, light velocity 

plays an important role, the clock retardation appears not only in "light clocks" 

but in any other "clock". 

The Marinov transformation is adequate to physical reality. The Lorentz transfor­

mation can be kept adequate to physical reality only if it will be considered from 

an absolute point of view, thus if the relative time will be considered not adequate 

to real time and the relative (or Lorentz) velocitf 3•5 ) appearing in thelorentz 

transformation formulas for velocities will be considered not as real velocity. In 

Refs. 3 and 5 I show the way in which the Lorentz transformation can be saved from 

the pernicious Einstein's relativistic claws. In Einstein's claws the Lorentz trans­

formation contradicts physical reality and the errors to which it leads are of first 

order in V/c. Let me remenber that the errors to which the Galilean transformation 

formulas lead are of sec~nd order in V/c. Thus the Lorentz transformation in Einst­

ein's claws is a worse mathematical apparatus than the Galilean transformation. 

In the Lorentz transformation, it is assumed that the velocity of light has an 

absolute constant value in any inertial frame; however, as the space coordinates en­

ter into the transformation formulas for time, time is assumed "relative". In the 

Marinov transformation, time is assumed absolute (consequently the space coordinates 

a re not present in the transformation formulas for ti me) and the velocity of 1 i ght 

appears to be relative, i.e., direction dependent in any moving frame. My approach 

is straightforwardly adequate to physical reality, while in the Lorentz transforma­

tion the absoluteness of time is transferred to light velocity and the relativity of 

light velocity is transferred to ti me. Nevertheless the Lorentz transformation is ve­

ry useful in theretical physics because it allows the introduction of the powerful 

mathematical apparatus of the 4-dimensional formalism which gives extreme simplicity 
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and elegance to electromagnetism and, according to rqy concepts, to gravimagretism, 
too. In my absolute space-time theory(S) I work intensively with the 4-dimensional 
mathematical formalism and I introduced the following very convenient notations: 

'a= (a, ia) = (a, iii) ( 3. 7) 

is a .4~VECTOR where a= a is its space part and ii is its time part, 

.......... ! -+1+ a ,a 
a = ~ lia -ii (3.8) 

-+ -+ ~ 
is a 4-TENSOR where a is its space-space part, a= a is its space-time part, a= a 

is its time-space part and ii is its time-time part, 

D = (a/ax, a;ay, a;az; -ia/cat) = (a/ax)x + (a/ay)y + (a/az)z - (ia/cat)i, 
(3.9) 

where x, y, z are the unit vectors along the three space axes and -r is the unit vec­
tor along the time axis, is a synbolical 4-vector calle by me the ERMA OPERATOR (in· 
honour of rqy girl-friend, the Bulgarian physi-cist Erma Gerova), the square of which 
is the synbolical 4-dimensional scalar, called the d'ALEMBERT OPERATOR (the synbol 
is proposed by me) 

-- D = D D = a2/ax2 + a2;ay2 + a2/az2· - a2;c2at2. (3.10) 

The four-dimensional Erma and d'Alenbert operators correspond to the three-dimen­
sional HAMILTON OPERATOR and LAPLACE OPERATOR 

v = (a/ax, a;ay, a;az) = (a/ax)x + (a/ay)y + (a/az)z, 

6 = a2;ax 2 + a2;ay 2 + a2;az 2. 

4. VELOCITY, ACCELERATION, SUPER-ACCELERATION 

(3.11) 

I introduce two kinds of velocity of a particle (by analogy with the universal 
and proper light velocities): 

The UNIVERSAL VELOCITY 
v = dr/dt, ( 4.1) 

where dr is the distance covered by the particle (which is absolute and does not de­
pend on the frame in which we are working) for a time interval dt registered on a 
UNIVERSAL CLOCK (i.e., a clock attached to absolute space). 

The PROPER VELOCITY 
v

0 
= dr/dt

0 
= dr/dt(l - v2;c2)1/ 2 

= v/(1 - v2;c2)112, (4.2) 

where the time interval dt
0 

is read on a PROPER CLOCK (i.e., a clock attached to the 
particle). 

It is logical to introduce three kinds of acceleration: 
The UNIVERSAL ACCELERATION 
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The FIRST PROPER ACCELERATION 

dv0 d dr 
u = - = -(--) 
o dt dt dt0 

The SECOND PROPER ACCELERATION 

_ dv0 _ d ( dr ) 
uoo - dto - dto dto 

Further it is logical to introduce four kinds of super-acceleration: 
The UNIVERSAL SUPER-ACCELERATION: w = du/dt. 
The FIRST PROPER SUPER-ACCELERATION: w0 = du0 /dt. 
The SECOND PROPER SUPER-ACCELERATION: w00 du00 /dt. 
The TH I RD PROPER SUP ER-AC CEL ERA TI ON: w000 = du00 / dt 0·• 

5. TIME ENERGY 

5.1. THE LOW-VELOCITY CONSIDERATION. 

( 4. 3) 

(4.4) 

(4.5) 

From the axiomatical relation (2.12), immediately after integration, the form of 
the TIME ENERGY of a particle with mass min low-velocity physics can be obtained 

e
0 

= mv2;2 + Const. 

If we assume Const= O, we obtain the form of the KINETIC ENERGY 

ek = mv2;2. 

(5. 1) 

(5 .2) 

If we assume Const= mc2 (see the third axiom), we obtain the form of the time 
energy in low-velocity physics, called LOW-VELOCITY TIME ENERGY 

2 2 e1 = me + mv /2. (5.3) 

5.2. THE HIGH-VELOCITY CONSIDERATION. 
To obtain the TIME ENERGY of a particle in high-velocity physics, we have to put 

in the axiomatical relation (2. 12) the proper velocity v
0 

instead of the universal 
velocity v. There are three possibilities 

de0 
= mv 

O
• dv, (5.4) 

and after integration we obtain three different expressions for the time energy in 
high-velocity physics 

eo 2 = - me (1 _ v2;c2)1/2 = _ mc2 + mv2/2 = - e + ek, (5. 5) 

eo = mc2/(l - v2;c 2)112 = mc2 + mv2;2 = e + ek, (5.6) 

eoo = mc2/2(1 - v2;c2) = mc2;2 + mv2/2 = e/2 + ek, (5. 7) 

where all constants of integration are taken equal to zero. I call these three forms, 
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respectively, LAGRANGE TIME ENERGY, HAMILTON TIME ENERGY and MARINOV TIME ENERGY. 
All these three forms of time energy are used in theoretical physics, however the 
Hamilton energy is the roost convenient as the proper time rooJTentum, p

0
, is propor­

tional to it 

(5.8) 

From here again (see the second formula (2.6)) we obtain the relation between 
proper mass and universal mass 

m
0 

= m/(1 - v2;c2J112 = m;i;c
0

, (5.9) 
where c = c/(1 - v2;c 2)112 is the proper light velocity in a frame attached to the 

0 
particle, which I call PROPER TIME VELOCITY of the particle. According to ITJY concepts 
one has to work always with the universal mass and its velocity dependence is to be 
transferred to the time velocity of the particle. Thus I use the notion "proper 
mass" only for certain convenience and the reader has never to forget that in the 
Newton's gravitational law (see the fourth axiom) the mass appears coupled with 
light velocity. Or to say even more clear: the notion "mass" does not exist; only 
the notion "energy" ("tiJTe rooJTentum") does exist. 

The product of the mass of the particle by its acceleration is called KINETIC 
FORCE. Thus 

f = mu, foo = muoo (5. 10) 

are, respectively, the UNIVERSAL KINETIC FORCE, the FIRST PROPER KINETIC FORCE and 
the SECOND PROPER KINETIC FORCE of the particle. I denote always the kinetic force 
of the particle {of the system of particles) by small letter "f" and the potential 
force (see later) acting on the particle (on the system of particles) by capital 
letter "F". As we shall see in the next chapter,the kinetic force of a particle is 
always equal to the potential force acting on the particle. This equality is the 
fundamental equation in physics. 
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II. TH E FU N VA M E N T A L E Q_ U A T I O N S O F C L A S S I C A L 

PHYSICS 

6. THE LAGRANGE EQUATIONS 

6. 1. THE LOW-VELOCITY CONSIDERATION. 
The space energy U and the space-time energy Ware called by the comm:Jn name PO­

TENTIAL ENERGIES. As can be seen easily, the space-time energy is to be considered 
only in high-velocity physics as its presence leads to effects of the order v/c; in 
low-velocity physics, when speaking about potential energy, we take into account on­
ly the space energy. In low-velocity physics I write time energy E without the sub­
script "o" and I usually mean only the kinetic energy. 

Let us assume that in a time dt the space {potential) energy U and the time {i.e., 
kinetic) energy E of an isolated system of n particles have changed their values by 

dU and dE. Denote by ri' vi, ui' ei' respectively, the radius vector, velocity, acce­
leration and energy (i.e., kinetic energy) of the i-th particle. As space energy de­
pends only on the distances between the particles (I repeat, the velocity dependence 
of the gravitational space energy is a high-velocity phenomenon), we shall have 

n au 
dU = 1 -.dr .. 

i=l ari 1 
(6. 1) 

The kinetic energy depends only on the velocities of the particles, and thus 

where we have taken into account (5.2) and t.he relation 

ui .dri = vi .dvi, 

which can be proved right by dividing both sides by dt. 

(6.2) 

(6.3) 

Substituting (6.1) and (6.2) into the fundamental axiomatical equation (2.15), 
and dividing by dt, we obtain 

(6.4) 

In this equation all n (as a matter of fact, 3n) expressions in the brackets must 
be i den ti ca lly eq ua 1 to zero because otherwise a dependence would exist between the 
components of the velocities of the different particles, and this would contradict 
our sixth axiom that the time energy of a particle of a system of particles depends 
only on its own velocity. Thus from (6.4) we obtain the following system of n vector 
equations 

1, 2, ... , n, (6.5) 
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which are called the LAGRANGE EQUATIONS and represent the fundamental equations in 

low-velocity physics. 

Taking into account (5.2), (4.3) and the first relation (5.10), we see that the 

left side of (6.5) represents the kinetic force fi of the i-th particle. Introducing 

the notation 

(6.6) 

and calling Fi the POTENTIAL FORCE which all n-1 particles exert on the i-th partic~, 

we can write equations (6.5) in the form 

i = 1,2, ..... ,n, (6. 7) 

in which form they are called the NEWTON EQUATIONS (or NEWTON'S SECOND LAW). 

The potential force with which the j-th particle acts on the i-th particle is 

F~ = - au .. /ar
1
., and the pote~tial force with which the i-th particle acts on the 

1 lJ . 

j-th particle is Fj = - aUi/arj, where Uij is the s.pace energy of these two par-

ticles. Since Uij depends on the distance between the particles, we shall have 

(6.8) 

Thus the potential forces with which two particles of a system of particles (in 

general, two parts of the system) act on each other are always equal and oppositely 

directed along the line connecting them. Consequently also the kinetic forces of two 

interacting particles will be equal and oppositely directed along the line connec­

ting them. This result is called NEWTON'S THIRD LAW. 

6.2. THE HIGH-VELOCITY CONSIDERATION. 

As the high-velocity forms o_f the space and space-time energies in gravimagretism 

and electromagnetism are different, the Lagrange equations in these two physical 

domains will be slightly different. I shall deduce the more complicated equations 

in gravimagretism, from which the equations in electromagnetism can immediately be 

obtained. 

A._ Gra vi magreti sm. 

In high-velocity gravimagretism the space energy U depends also on the velocities 

of the particles and equation (6.1) is to be replaced by the fol lowing one (see for­

mulas (2.9), (5.9) and (4.4)) 
(6. 9) 

n au U· l (-.dr. + ~v- .dv .), 
i = 1 ar i i c2 i o1 

where Ui is the part of the space energy in which the i-th particle takes part which 

is universal with respect to mi. 

In high-velocity physics equation (6.2) is to be replaced by the following one 

(see formulas (5.6), (5.5) and (4.4)) 
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(6.10) 

where e
0

i and ef are the Hamilton and Lagrange time energy of the i-th particle. 

In high-velocity gravimagretism we have to take into account also the space-time 
energy W. However, taking into account that the magreti c energy of two particles mo­

ving with velocities v1 and v2 is v1.v2;c 2 times less than their gravitational ener­

gy, we have to work not with the proper magreti c energy of the system of masses but 

with its universal magretic energy. 

In Ref. 5 when deducing the Lagrange equations in gravimagretism, I worked with 

the proper magretic energy of the system. This more complicated calculation was 

needless. Indeed, to discuss the problem whether we hav_e to work with the proper or 

universal magretic energy is senseless, as we do not know whether a magretic energy 

does exist at all. Thus we shall consider Was the universal magretic energy 

n aw aw 
dW = I (-.dr. + -.dv

1
-) 

i=l ar; 1 av; 
n aw aw aw I {-.dr. + d(-.v.) - d(-~ -).v.}, 

i=l ar; 1 av; 1 ov; 1 
(6.11) 

We have 
n aw n n l d(-.v.) = L dW. = d I W. = 2dv-J, 

i=l av; 1 i=l 1 i=l 1 
(6 .12) 

where Wi is the part of the space-time energy in which the i-th particle takes part 

and there is 
n 

w = ( 112 l I w .•. 
i =l 1 

so that formula (6.11) can be written as follows 

~ aw aw dW = l {- -.dr. + d(-).v.}. 
i = 1 ar i 1 av i 1 

(6 .13) 

(6 .14) 

Substituting equations (6.9), (6.10) and (6.14) into the fundamental equation 

(2.15) and dividing by dt, we obtain by the same reasoning as in Sect. 6.1 the fun­

damental equations of motion in high-velocity gravimagretism 

i = 1,2, ..... ,n, 
0 

~a(E - W)} + (U./c2)u . = _ a(U + W), 
dt av; 1 01 ar; 

(6.15) 

which I call the FULL LAGRANGE EQUATIONS IN GRAVIMAGRETISM. If there is no magretic 

energy, we have to put W = 0. But if the gravitational energy will depend on the 

proper masses of the particles, there still will be a difference between the low­

velocity equations (6.5) and the high-velocity equations (6. 15). 

The quantity 

F. = - a(u + W)/ar. 
1 1 

(6.16) 
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is called FULL POTENTIAL FORCE. The quantity (6.6), as already said, is called po­
tential force and if rrore precision is needed NEWTONIAN POTENTIAL FORCE. 

The quantity 

f = ( + 2 . - ....!!.(~) = ~ . - _cl_,~) = f . - _j_1 ~) oi m Ui/c ) uo, dt av• muo, dt'clv· 01 cit'av-
1 l l 

(6. 17) 

is called PROPER FULL KINETIC FORCE. The quantity f
0

i is called PROPER KINETIC FORCE 
and if more precision is needed PROPER NEWTONIAN KINETIC FORCE. 

The quantity 
iii= m + u.;c 2 

l 
(6. 18) 

is called FULL MASS and the mass m can be called with rrore precision NEWTONIAN MASS. 
As however mc2 » I Ui I , a dis ti ncti on between m and iii wi 11 be not made further. 

The FULL NEWTON EQUATIONS .are 
i=l,2, ..... ,n. (6.19) 

The FULL NEWTON'S THIRD LAW for the full potential forces with whi_ch two parti­
cles act one on another 

(6.20) 

shows that these forces are equal and oppositely directed along the line joining 
them. 

The FULL NEWTON'S THIRD LAW for the full kinetic forces of two interacting par­
ticles 

shows that these forces are also equal and oppositely directed. However it may be 

(6.22) 

i.e., the Newtonian kinetic forces of two interacting particles in high-velocity 
physics may be not equal and oppositely directed. Hence at the availability of 
space-time energy the "Newtonian" Newton's third law might be violated. 

B. Electromagnetism. 
In electrimagnetism the space energy is not velocity dependent and the space-

time energy has not "velocity dependent denominators". Thus, it is easy 
the FULL LAGRANGE EQUATIONS IN ELECTROMAGNETISM will have the form 

....!!_ a ( E0 
- w) = _ a ( u + w) 

dt av; ar; ' 
i = 1,2, ..... ,n. 

Correspondingly the PROPER FULL KINETIC FORCE wi 11 have the form 

f
01

. = mu
01

. - ...E.. ~ · = f - ...E.. ~ 
dt av; oi dt av;'' 

to see that the 

(6.23) 

(6.24) 

and here the notion "full mass" cannot be introduced, i.e., only the gravitational 
energy leads to a change of the Newtonian mass to a full mass but the electric 
energy does not. Pay attention in making the distinction: If there are two 
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particles with masses m1, "12 and electric charges q 1, q2 (let them be at rest), 

·whose gravitational and electric energies are Ug and Ue, there will be a difference 

·in the masses of the particles when they will be separated and when they will stay 

near one to another: the decre·ased mass of every particle will be given by formula 

(6.18), where Ui (< 0) is their gravitational energy. However, if we consider the 

two particles as a single particle, the mass of the composed particle will be, neg­

lecting their mutual gravitationla energy as small with respect to their mutual elec-

tri c energy, 
(6.25) 

There is nothing strange in this effect, as mass and energy are two names of the 

same thing and to pass from the masses to the energies we have only to multiply 

(6.25) by c2. 
As also in electromagnetism only the-full kinetic forces are equal, oppositely 

directed and acting along the line joining the interacting particles, but the New­

tonian kinetic forces are not, the "Newtonian" Newton's thid law in electromagnetism 

might become violated and only the full Newton's third law holds good (see Sect. 63). 

In electromagnetism also the. energy conservation law may become violated (see Chap­

ter VI). 

One will perhaps pose the question: How have I come to a violation of the energy 

conservation law when this law is a fundamental axiom in l1lY electromagnetic theory 

(axiom IX)? The answer is the following: My axiomatics concerns only the physics of 

particles. As in the physics of particles I assume the energy conservation law as a 

fundamental axiom, one can, of course, not violate this law for a system of single 

particles. But l1lY experiments are done with solid bodies (pieces of metal), i.e., 

media, in which currents flow. Here the kinetic forces of the particles are "trans­

ferred" to the whole body (it can be also liquid) and this is the reason that leads 

to a violation of the energy conservation law in such experiments. 

Of course, we are at the beginning of a new chapter in physics {the physics of 

the violation of the laws of conservation) and the mathematical and logical analy­

sis of the appearing phenomena needs a much more profound experimental and theoreti­

cal research. 

7. THE NEWTON-MARINOV EQUATION 

Now I shall give another form of the full Lagrange equations in gravimagretism, 

·called in this form also the Newton-Marinov equations. 

Let us have a system of n masses mi moving with velocities vi, whose distances 

from a given REFERENCE POINT are ri. The quantities 

n 
<l>=-yl m./r., 

i =1 01 1 

n 
A = - y l m0 iv/cri 

i=l 
( 7 .1) 

are called GRAVITATIONAL POTENTIAL and MAGRETIC POTENTIAL generated by the system 
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of masses at this reference point. 

If a material point (a particle) with mass m, called TEST MASS, crosses the refe­

rence point with a velocity v, the gravitational and magretic energies of the whole 

sys.tern of n+l masses in which mass m takes part will be 

( 7. 2) 

In equations (6.15) we can write U. instead of U and e? instead of E0 • Choosing 
l l 

then our test mass as the i-th particle of the system of n+l particles, we can sup-

press the index "i" and so we obtain the equation of motion of our test particle in 

the form 

m2(c2 + <l>}u 
C 0 

m dA 
+ - - = -

C dt 
(7. 3) 

This equation can be written also in the form 

(1 + <1>/c2)u
0 

+ (1/c}dA/dt = - grad(.<!> - v.A/c)/(1 -v 2;c 2 ) 112, (7.4) 

which is the equation of motion of a particle surrounded by a gravimagretic system 

of particles in which the mass of the particle does not take place at all. 

Equation (7.3) represents the full Newton (Lagrange) equation in gravimagretism 

written with the help of the potentials and I call it the NEWTON-MARINOV EQUATION. 

When deducing the Newton-Marinov equation I have supposed that the considered 

material system is isola_ted. But it is impossible to construct a gravitationally isola­

ted system, as one cannot suppress the gravitational action of the celestial bodies. 

Looking at formula (7.3), it is logically to assume that the term c2 in the brackets 

on the left side represents the gravitational potential generated by all celestial 

bodies at the reference point taken with a negative sign, i.e., 

n 
C2 = - "' ' I .., = y l m. r., 

w i =l l l 
( 7. 5) 

where n is the nurrber of the particles in the world, or the number of the celestial 

bodies (in the last case mi is the mass of the i-th celestial body). From this point 

of view the rl]Ystery of time energy disappears, as time energy represents nothing 

else than the negative gravitational energy of the particle with the mass of the 

whole world 
( 7 .6} 

So we reduce the energy forms to two kinds - space energy and space-ti me energy, 

and it becoires clear that never the "voluire" and the "materiality" of the particles 

can be.established, as such "material points", i.e., drops of energy, do not exist. 

The time energy of any particle is its gravitational energy dispersed in the whole 

world. Thus, accepting the undefinable notions "space" and "time" as intuitively 

clear, the only enigmatic notion in physics remains the notion "space energy". 

(N.B. May be in this link of every particle with the whole universe is to be sear­

ched for the explanation of the paraphysical phenomena.) 
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Errtracing this point of view, we can cancel the notion "time energy" in our axio­

matics and operate only with the notions "space energy" and "space-time energy" (let 

me again errphas i ze that in the same manner we ,can cancel the notion "mass" and ope­

rate only with the notion "energy"). 

The notion "time energy" can be canceled from the axiomatics if we replace the 

sixth and ninth axioms by the fa llwoi ng ones: 

AXIOM VI. The energy e
0 

of any particle is its gravitational energy with the mass 

of the whole world, which we call WORLD ENERGY and denote by Uw, taken with a 

negative sign. The world energy ofa unit mass which rests in absolute space is 

equal to - c2 energy units. Thus the world energy of a mass m moving in absolute 

space is 
(7. 7) 

AXIOM IX. The change in time of the difference of the space and space-time ener­

gies of an isolated material system is equal to the change in time of its world 

energy, that is 
(7.8) 

So we see that the discussion of the problem about the equality of "inertial" and 

"gravitational" masses loses its sense, as "inertial mass" does not exist .. The mass 

is only gravitational. Thus all costly experiments with which one searches to estab­

lish whether there is a difference between the "inertial" and "gravitational" masses 

have been and continue to be a waste of time, efforts and money. 

In the light of these conclusions the PRINCIPLE OF EQUIVALENCE in the formulation 

that the gravitational field in a small space domain can be replaced by a suitable 

non-inertially moving frame of reference also loses its flavour. Let me note, how­

ever, that the principle of equivalence in its "relativistic" formulation, accor­

ding to which a gravitational acceleration cannot be experimentally distinguished 

from a kinematic acceleration is not true, as I have demonstrated by the help of iey 

accelerated "coupled mirrors" experiment. ( 3 •5 •9 ) 

Let us now present the Newton-Marinov equation in another more convenient for 

calculations form. 

The full ti me change of A can be presented as a sum of its parti a 1 ti me change 

(direct dependence of A on time, because then charges generating A change their 

positions and velocities) and the time change-of A caused by the change of the ra­

dius vector of the particle, because of its motion with velocity v. Thus we can 

write 

dA _ aA + aA dr + aA ar dx + aA ar dy + aA ar dz_ aA + vaA + v aA + v aA + v aA = 
dt at ar at ar ax dt ar ay dt ar az dt at ar x ax Y ay z az 

:~ + vdivA + (v.grad)A. ( 7 .9) 

Note that I consider the time change of A due to the time change of the radius 

vector of the test particle, first, because of a direct change in time of the ra-
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dius vector of the test particle, vdivA, and then because of a direct change in time 

of its co!T!)onents, (v.grad)A. My critics of the above interpretation of the full 

time derivative of A raise the objection that I take twice the same "partial" deri­

va~ive. They do not take into account that in physics there is only one independent 

variable, the ti me t, and thus we are not at a 11 al lowed, from a rigorous ma the ma ti -

cal point of view, to introduce partial time derivatives {there are always people 

who assert that the Maxwell-Lorentz equations are to be written not with partial but 

with full derivatives). Indeed, the partial derivatives in physics have another as­

pect which is rather physical and not mathematical: We look first at the change of 

the potential when the particles generating it change velocities and positions for 

a time dt and second when the test particle changes its position for a time dt. In 

the second case we have to ta~e both vdi vA and (v. grad)A, otherwise (i.e., by taking 

only (v.grad)A) we shall obtain a wrong physical equation. The mathematical reliabi­

lity of equation (7.9) is proven by the fact that the obtained equation of rrotion is 

physically right. 

However, we shall later see (Sect. 24) that in electromagnetism the term 

(aA/ar){dr/dt) is to be slightly changed, as·the experiment impels us to introduce 

this change. Thus if we shall not write now in (7.9) the term (aA/ar)(dr/dt), never­

theless we have to introduce it later in a slightly changed form, as otherwise our 

equation will enter into a conflict with the experiments. Thus there is no need now 

to discuss at great length the problem whether equation (7.9) is to be written with 

or without this term. I repeat, we are impelled to introduce ad hoc. such a term (in 

a slightly modified form) to be able to obtain an equation which will be adequate to 

physical reality. Thus the conclusion is to be drawn that the fundamental equation 

in electromagnetism can be not deduced only by a rigorous mathematical logic from 

the Coulomb and Neumann laws. Nevertless the si!T!)licity with which I obtain from 

these two laws almost the right fundamental equation is amazing. 

Taking now into account the matheAllltical relation (seep. 6) 

grad{v.A) = (v.grad)A + (A.grad)v + vxrotA + Axrotv, (7.10) 

which, in our case, must be written at the condition v = Const, and putting (7.9) 

and (7. 10) into (7.3), making no difference between full and Newtonian mass, we ob­

tain the Newton-Marinov equation in its rrost convenient form 

(7 .11) 

To this equation we always attach its scalar supplement which can be obtained 

after the multiplication of both its sides by the velocity of the test mass 

v. f
0 

= deofdt = - m
0
v.( grad<!> + aA/c-at + vdi vA/c). (7. 12) 

Introducing the quantities 

G = - grad<!> - clA/cat, B = rotA, S = - di vA, ( 7.13) 

called GRAVITATIONAL INTENSITY, (VECTOR) MAGRETIC INTENSITY and SCALAR MAGRETIC IN-
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TENSITY, we can write the Newton-Marinov equation in the form 

( 7. 14) 

Denoting (l/m
0

)~
0
/dt = Gglob and calling it GLOBAL GRAVITATIONAL INTENSITY, we 

can write (7.11) and (7.14) in the form 

Gglob = - grad<!> - aA/cat + (v/c)xrotA - (v/c}divA = G + (v/c)xB + (v/c}S. ( 7. 15) 

When clarity needs it, G is to be called RESTRICTED GRAVITATIONAL INTENSITY. 
Taking partial derivative with respect to time from the gravitational potential 

<I> (consider the distances ri in the first expression (7.1) as functions of time) 
and divergence from the magretic potential A (see the second expression (7.1)), we 
obtain the EQUATION OF POTENTIAL CONNECTION 

( 7. 16) 

which in official electromagnetism is wrongly called the "LORENTZ GAUGE CONDITION". 
Equation (7.16) is a lawful physical equation and not a "condition" which one can 
impose at wi 11. 

8. THE NEWTON-LORENTZ EQUATION 

In electromagnetism the formulas analogical to formulas (7.1) and (7.2) for the 
ELECTRIC and MAGNATIC POTENTIALS are 

n 
<t> = r q./r., 

i =l 1 1 

u = q<I>, 

n 
A= }: q.v./cr., 

i=l 1 1 1 
(8 .1} 

W = - qv.A/c. (8.2) 

The equation analogical to the Newton-Marinov equation is called in electromagne­
tism the NEWTON-LORENTZ EQUATION and I shall write it in a form analogical to (7.3) 

ru
0 

+ (q/c)dA/dt = - qgrad(<I> - v.A/c), 

in a form analogical to (7.11) 

(8.3) 

f
0 

= dp/dt = - q(grad<I> + aA/cat) + (q/c)vxrotA - (q/c)vdivA, (8.4) 

and in a form analogical to (7.15), calling Eglob = (1/q)dp
0
/dt GLOBAL ELECTRIC IN-

TENSITY, 
Eglob = - grad<!> - aA/cat + (v/c)xrotA - (v/c)divA = E + (v/c)xB + (v/c)S, (8.5) 

where 
E = - grad<!> - aA/cat, B = rotA, S = - di vA ( 8.6} 

are the (RESTRICTED) ELECTRIC INTENSITY, the (VECTOR) MAGNETIC INTENSITY and the 
SCALAR MAGNETIC INTENSITY, q is the electric charge of a test mass m moving with 
velocity v and <I>, A are the electric and magnetic potentials of the surrounding sys­
tem at the reference point crossed by the test mass. 

The·scalar supplement to the Newton-Lorentz equation is (see (7. 12)) 
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v.f
0 

= de/dt = - qv.(grad<I> + aA;cat + vdivA/c). (8.7) 

The EQUATION OF POTENTIAL CONNECTION in electromagnetism will have exactly the 

same form as in gravi magreti sm ( see ( 7. 16)) 

di vA = - a<1>/c at. (8.8) 

Substituting (8.8) into (8.5), we obtain the Newton-Lorentz equation in a very 

symmetric.form showing that Eglob is determined by the time and space derivatives 

of <I> and A 

Eglob = (v/c2)a<1>/at - grad<!> - ( 1/c)aA/at + (v/c)><rotA. ( 8.9) 

Thus the scalar magnetic intensity can be calculated either by the third formula 

(8.6) or by the formula 

· S = (1/c)cl<l>/clt. (8.10) 

If we have a system of two particles with masses _m1, "12 and charges q1, q2 ooving 

with velocities v1, v2 , we can write 

(8.11) 

Thus the following equality must be valid 

(8.12) 

as grad(U + W) in equat,on (8.3) can be taken once for the reference point where m1 
is placed and once for the reference point where "12 is placed.· 

or 

Equation (8.12) can be written in the form 

2 
L {m.u . + (qi/c)dAi/dt} 0, 

i =1 '1 01 

2 
l (p . + q.A./c) = Const. 

i=l 01 1 1 

(8.13) 

(8.14) . 

The quantity in the bracket called FULL MOMENTUM of the particle mis denoted by 

p
0 

and (8. 14) is called LAW OF THE CONSERVATION OF THE FULL MOMENTUM. 

If W = 0, we obtain 
2 
l p . = P = Const. (8.15) 

i = l 01 0 

This is called LAW OF CONSERVATION OF THE (SPACE) MOMENTUM and P
0 

is called pro­

per momentum of the whole system. 

The law (8.14) can be easily generalized for a system of n particles, as any two 

particles of the system interact independently of the existence of the other par­

ticles. 

If r is the radius vector of a particle m, the quantity 

(8.16) 

is called PROPER ANGULAR MOMENTUM of the particle m with respect to the frame's 
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origin. 

If n 
l l . = L = Const , 

i =1 07 0 
( 8. 17) 

we say that the angular momentum of the system of n particles with respect to the 

frame's origin is conserved. Equation (8.17) is called LAW OF CONSERVATION OF THE 

ANGULAR MOMENTUM and L
0 

is called proper angular momentum of the system. The deduc­

tion of this law in gravitation and electricity is straightforward but there are 

problems in gravimagretism and electromagnetism. As I have shown above, one can de­

duce logically only the law of conservation of the full momentum. 

If r is the radius vector of a particle with a kinetic force f, i.e., on which a 

potential force Facts, then 

M = rxF (8. 18) 

is called MOMENT OF FORCE (or TORQUE) of this potential. force with respect to the 

frame's origin. The vector distance r in (8. 18), as well as in (8.16), can be taken 

with respect to any point of space. 

In this book the four-dimensional aspects of electromagnetism are not considered 

(my electromagnetism in 4-dimensional interpretation is considered in Ref. 5). I 

should like only to note that the axiomatical assertion (see equations (2.11) and 

(2.14)) that the electric and magnetic energies of two positive charges moving with 
parallel velocities have opposite signs finds its more profound explanation when 

considering the sum of the electric and magnetic energies of two charges (see equa­

tion (8. 11)) as a scalar product (taken with a negative sign) of the 4-current of 

the one particle 

Jl = 91~1 = (qlvl, iqlc) 

with the 4-potential generated by the other particle 

A1 = (Al' i<l>1) = (j 2/cr, i} 2;cr) = (q2v2/cr, iqz!r). 

(8 .19) 

(8.20) 

Calling this product electromagnetic energy of the two particles and denoting it by 

W + U , we sh a 11 ha ve 
~f+ • ~ 2 

W + U = - Jl .Al = - JI.Al+ JlAl = - qlq2vl.v2/c r + qlqzir. 

( 8.21) 

9. DIFFERENTIAL RELATIONS BETWEEN DENSITIES AND POTENTIALS 

A STATIC SYSTEM of particles is this one in which the particles do not move. The 

QUASI-STATIC SYSTEM is this one in which the particles can move but at any moment 

at any differentially small volume the same nurrber of particles rroving with the same 

velocity can be found. A DYNAMIC SYSTEM of particles is this one in which the parti­

cles can have arbitrary velocities. 

The MASS and MOMENTUM DENSITIES of a system of particles at a reference point with 
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radius vector rare the following quantities {these are the so-called Ii-DENSITIES) 

n n 
µ { r) = . l mi Ii { r - r i ) , 

1=1 
•{r)=.r pili(r-ri), 

1 =1 
(9. 1) 

where ri are the radius vectors of the single masses mi, pi are their momenta and 
o(r) = o(x)li(y)li(z) is the three-dimensional Ii-function of Dirac. 

9.1. THE STATIC AND QUASI-STATIC CASES. 

First I shall prove the validity of the following mathematical relation 

ll ( 1/ r) = - 47Tli { r) , (9.2) 

where ll is the Laplace operator and r is the distance between the origin of the 

frame and the reference point. 
Indeed, putting into (9.2)' 

(9. 3) 

we obtain an i den ti ty. Only for r = 0 the le ft-hand side gives the uncertainty 0/0 

and the right-hand side gives the uncertainty o(O). 
To establish whether relation (9.2) is valid also for r = 0, let us integrate 

(9.2) over an arbitrary sphere with radius R which has its center at the frame's 

origin. Using the Gauss theorem, we shall obtain for the integral on the left-hand 

side 
fll{l/r)dV = fdiv{grad(l/r)}dV = ~grad{l/r).dS = - l(l/r 2)dS = - (1/R2)~dS = - 47T, 
V V S S S (9 . 4) 

where Sis the surface of the sphere of integration whose volume is V and dS is the 

elementary area (taken as a vector) of the integration surface with a direction 
pointing outside of the volume enclosed. The integral of the right of (9.2) taken 
over the same arbitrary surface, on the grounds of the fundamental property of the 

Ii-function.gives the same result. Since the integrals of both sides of (9.2) are 
equal and the domains of integration represent spheres with arbitrary radii, both 
integrands must be also equal. Thus the relation (9.2) is valid also for r = 0. 

In the same way, or on the grounds of the first axiom for homogeneity and i sot­

ropy of space, we can prove the validity of the following relations 

i=l,2, ..... ,n, (9.5) 

where ri are the radius vectors of n different space points. 
Let us assume that ri is the radius vector of a space point where a mass mi is 

placed(static case) or where at any moment a mass mi moving with a velocity vi can 
be found (quasi-static case). Multiplying every of the equalities (9.5) by the cor­
responding mass mi or momentum divided by c, pi/c, and summing, we obtain, after 
having taken into account (7.1) and (9.1), the following differential equations for 

the potentials in terms of the mass and momentum densities 

M> = 47fyµ, !::A = ( 47T / C )yir. (9.6) 
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9.2 THE DYNAMIC CASE. 

Let us consider a point (calling it i-point) which roves with a velocity v along 

the x-axis of a rest frame K and at the initial zero rooment crosses the origin of 

the frame. Let a rooving frame K' be attached to this i-point, and let the transfor­

mation between Kand K' be a special one (as are the transformations considered in 

Sect. 3). In such a case the radius vector of the i-point in K' will be ri = (0,0,0). 

If the radius vector of the reference point in frame K is r = (x,y,z), according to 

the Marinov transformation (3.5), the radius vector r' of the same reference point 

in the moving frame K' is given by 

r' = (x',y',z') = ( x; v~ 1/2' y, z). 
(1-v/c) 

(9. 7) 

The distance between the i-point and the reference point considered in frame K' 

but expressed by the coordinates in frame K wil 1 be 

r
0 

= Ir' - r 1 I = Ir - ri 10 = {(x -vt)2 + (1 -·v2;c2)(y2 + z2)}1/2 (9.8) 

1 _ v2;c2) 1/2 

This distance considered in frarre K and expressed by the coordinates in frarre K will 

be 

r= lr-ril ={(x-vt}2+/+z2} 112. (9.9) 

I call r the UNIVERSAL DISTANCE and r
0 

the PROPER DISTANCE. ( 3 ,5 ,B) The difference 

between these two distances is due to the Marinov-aether character of light propa­

gation. I repeat, this has nothing to do with a physical "length contraction" ("Lo­

rentz length contracUon"). As a matter of fact, here we are considering the dis­

tance between two points moving with respect to one another which cannot be connec­

ted by a rigid rod, and thus it is meaningless to speak about a contraction of such 

a "rod". On the other hand, the situation in the frames K and K; is entirely symrret­

ri c: in frame K the i-point is rooving and the reference point is at rest, while in 

frame K' the i-point is at rest and the reference point is moving. I wish that the 

reader understands once and for ever that the Marinov transformation (as well as the 

Lorentz transformation) serve only for the introduction of the Marinov-aether charac­

ter of light propagation into the mathematical apparatus of high-velocity physics. 

The Marinov-aether character of light propagation is incompatible with the classi­

cal conceptions for motion of a particle which, I repeat, lead to the Newton-aether 

character of light propagation (cf. formulas (1.1) and (1.2) once more!). The Mari­

nov-aether "abnormality" in the motion of the photons (this "abnormality" exists al­

so at the motion of the particles with non-zero rest mass( 5)) leads to the mathema­

tically contradicting equations (9.8) and (9.9) which describe the same physical 

distance. 

N™ easily can be established the validity of the following mathematical relation 

(9.10) 
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where Dis the d'Alerroert operator and 

r
00 

= r
0

(1 - v2;c2)112 = {(x -vt) 2 + (1 -v2;.c 2 )(y2 + z2)}1/ 2 ,9.11) 

is called the SECOND PROPER DISTANCE. 

Indeed, using in (9.10) the expression (9.11), we obtain an identity. Only for 

1a□ = O, i.e., for x -vt = y = z = 0, the left-hand side gives· the uncertainty 0/0 

and the right-hand side gives the uncertainty o(O). 

To establish whether relation (9.10) is valid also for r
00 

= O, let us integrate 

(9.10) over an arbitrary sphere with radius Rwhich has its center at the i-point 

(thus this sphere is 100vin9 along the x-axis of frame K with the velocity v) 

f Ll,(1/r )dV = - 411fo(r -r. )dV. 
V 00 V l 

(9 .12) 

For all points of voluire V the integrand on the left-hand side is equal to zero. 

Thus we can spread the integral over a small domain around the point with coordina­

tes given by x -vt = y = z = O, i.e., about the i-point which is also .the origin 

of frame K'. But as r
00

..,. 0, we obtain l/r
00

..,. 00 , and the derivatives with respect 

to x,y ,z wi 11 increase much faster than the derivative with respect to t. Hence 

the latter can be neglected with respect to the former. So we reduce the integral 

on the left-hand side of (9.12) to the integral (9.4). The integral on the right­

hand side of (9.12), on the grounds of the fundamental property of the a-function, 

gives the same result, and, as in Sect. 9.1, we conclude that the integrands must 

be equal. Thus relation (9.10) is valid also for the i-point. 

In the same manner as in Sect. 9.1, we can obtain from (9.10) the following re­

lations between potentials and densities for the most general dynamic case 

D. A = ( 411/c)yir( t), (9 .13) 

where. the mass and momentum densities can be functions of time. 

In electromagnetism the a-DENSITIES of the CHARGE and the CURRENT are defined 

by the follDn'ing formulas similar to formulas (9.1) 

n n 
Q(r) = .l qio(r -ri), 

l=l 
J(r) _): jio(r -ri ). 

l =1 

In electromagnetism the formulas analogical to (9.6) and (9.14) will be 

411Q, 

411Q(t)' 

nA = - ( 411 / c )J , 

QA = - ( 411/c)J(t). 

10. INTEGRAL RELATIOOS BETWEEN DENSITIES AND POTENTIALS 

10. 1. THE STATIC ANO QUASI-STATIC CASES. 

(9 .14) 

(9.15) 

(9 .16) 

Substititing formulas (9.1) into the definition equalities for the potentials 

(7. 1), we obtain the integral relation between the gravitational and magretic po­

tentials and the mass and momentum densities for a static and quasi-static system 
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<I> = - y f (µ/r)dV, 
V 

A= - yf(n/cr)dV, 
. V 

( 10.1) 

whereµ and 1r are the mass and momentum densities in the volume dV which are equal to 

the sums of the 6-densi ties in dV divided by dV. These equations are to be considered 

also as solutions of the differential equations (9.6). 

10.2. THE DYNAMIC CASE. 

The integral relations between densities and potentials for the general dynamic 

system are to be obtained by solving equations (9.13). 1.showed 5 that the solution 

of equations (9.13) leads to the following integral relations between densities and 

potentials 
y J l{ r r <l>{r

0
,t) = - 2 r µ(r,t-c) + µ(r,t+c)}dV, 

V 

yfl r ·r A(r
0

,t) = - 2 V r{,r(r,t -z) + w(r,t +z)}dV, ( 10.2) 

where<l>(r
0

,t) and A(r
0

,t) are the potentials at the reference point with radius vec­

tor r
0 

at the moment t and the integral is spread over the whole space or over the 

volume Vin which there are particles of the system. 

I call the potentials (giving for brevity only the formulas for the gravitational 

potential) 
<I>, = _ y flJ( t - r/ c) dV, 

V r 
<I>"= - yfµ(t +r/c) dV, 

V r 
( 10.3) 

respectively, ADVANCED and RETARDED POTENTIALS. Official physics calls wrongly <I>' 

"retarded" and <I>" "advanced" potential. Indeed ti>' is the po ten ti al at the moment 

t' = t - r/c which is before the OBSERVATION MOMENT t and thus it is an ADVANCED 

MOMENT, while <I>" is the potential at the moment t" = t +r/c which follows after the 

observation moment t and thus it is a RETARDED MOMENT. Conventional physics mixes 

up the notions as it supposes that the "interaction" propagates with the velocity c 

and it assumes that <I>' is the potential at the moment of observation t, i.e., that 

the potential "appears" with a certain "retardation" at the reference point and 

leaves absolutely without attention the other solution <I>" of the equations (9.13). 

The potentials must be given as half-sums of their advanced and retarded values 

as an observer at the reference point can obtain information only about the advan­

ced and retarded values in the following two ways: 1) either messengers will start 

from any vol une dVi at the respective advanced moments t 1 = t - r/c and, moving 

with the highest possible velocity c, will bring the information about the mass 

and roomentum densities in dVi to the observer at the reference point, or 2) messen­

gers will start from the reference point at the observation moment t and rroving with 

velocity c will reach every of the volumes dVi at the respective retarded rroments 

ti = t +r/c to see which are there the mass and momentum densities. Obviously the 

densities at the JJDment of observation will be the half-sums of the advanced and 
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retarded densities. 

If in the volume dVi the charges move with accelerations, they will radiate ener­

gy in the form of gravimagretic waves which will propagate in space with the veloci­

ty ~flight. In Chapter IV I show that a mass moving with acceleration generates, 

besides the "momentary" gravitational and magretic intensities, two other intensi­

ties:· the one propagates with the velocity c away from the mass carrying with itself 

momentum and energy and the other acts directly on the radiating mass. I call the 

"momentary" intensity due to the masses and their velocities the POTENTIAL INTENSI­

TY, the intensity field due to the masses and their accelerations which carry away 

energy and momentum the RADIATION INTENSITY, and the intensity acting on the radia­

ting mass braking its motion, so that the lost kinetic energy should compensate the 

radiated energy the RADIATION ,REACTION INTENSITY. The mathematical logic leads to 

all these three substantially different intensities. And all these three intensities 

have been observed in electromagnetism ex as the. mathematics applied to the 

Newton-Lorentz equation predicts them. 

If we wish to know what gravimagretic energy reaches the reference point at 

the moment of observation tin the form of gravimagretic waves, we have to use for 

the calculation not the observation potential (with whose help the potential inten­

sity can be calculated) but the advanced potentia 1 because the radiated energy need; 

the time r;tc to come from the volume dVi to the reference point. 

Official physics, or, better to say, the majority of the conventional physicists 

think that not only the radiated energy propagates with the velocity c but also the 

potentials "propagate" with the same velocity and introduce the notion "propagation 

of interaction". Following this trend, they calculate also the potential intensi­

ties by the help of the advanced (in their language, retarded) potentials. This is 

wrong, as one is able to observe only the propagation of energy, i.e., the transfer 

of mass. An immaterial "interaction" cannot be observed and it is senseless to nar­

ra·te that such an "interaction", like a ghost, can propagate. 

The potentials are not really existing physical quantities, they exist only in 

our heads. Also the intensities exist only in our heads. The only physical quantity 

which really does exist is the energy (the mass). And only energy can be tran-

sferred from one space domain to another. 

The wrong treatment of the potentials of dynamic systems leads to the result that 

the official physicists are unable to calculate the radiation reaction intensity pro­

ceeding directly from the potentials. Their wrong calculations lead to the phantas­

magoric self-accelerating solutions.( 5) In Chapter IV I give ny theoretical solu­

tion of the problem.about the radiation of electromagnetic waves. And I ~repose two 

very simple experiments (see Sect. 37) with whose help one can see whether the po­

tential electric intensity appears momentarily in whole space, as I assert, and 

that only the radiation electric intensity has a wave character of propagation with 

a velocity equal to c. 
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11. LIENARD-WIECHERT FORMS OF THE POTENTIALS 

Let us consider (fig. 1) a system consisting of only one electric charge q which 

moves in absolute space with the constant velocity v. Let us take the reference 

point at the origin, P, of the rest frarre K. 

Let us assurre that at the advanced !Tllirent t' the charge q sends a photon from 

its advanced position Q' which, covering for the tiire nt' = r'/c the ADVANCED DIS­

TANCE r' arrives at the observation moirent t = t' + r '/ c at the reference point 

when the distance to q is the OBSERVATION DISTANCE r. Then this photon is sent back 

to q along the RETARDED DISTANCE r" and after ti ire nt" =· r"/c it reaches the charge 

q at the retarded rrorrent t" = t + r"/c when it is at its retarded position Q". 

If the photon has a Newton-aether character of propagation, taking into account 

that Q'Q = v(r'/c) and QQ" = v(r"/c), we can easily find the relation between the 

observation distance, on one side, and the advanced and retarded distances, on the 

other side, 

These formulas can be obtained also if putting into the second formula ( 1.1) 

c' = r/nt', c = r'/nt', n.V = n'v, for the first case, and c' = r/nt", c = r"/nt", 

n.V = - n".v, for the second case. 

However when the photon has a Marinov-aether character of propagation, we have 

to find the relation between observation, advanced and retarded distances by put­

ting into the second formula (1.2), in which the factor (1 - v2;c 2 ) 112 related to 

the clock retardation is to be omitted, c' r/6t', c = r'/nt', n. V = n' .v, for the 

first case, and c' = r/nt!'• c = r"/M", n.V = - n".v, for the second case, thus ob-

jJ 

X 
Fig. 1. Advanced, observation and retarded distance. 
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taining 
r = r'(l - n'.v/c), r = r"(l + n".v/c), ( 11.2) 

and here (as well as in formulas (11.l))n' and n" are the unit vectors pointing, 
res_pecti ve ly, from the advanced and retarded position of q to the reference point. 

As the Newton-aether and Mari nov-aether characters of 1 i ght propagation are mate­
mati cal ly contradicting, it is senseless to try to reconcile formulas (11.1) and 
(11.2). 

By putting the expressions {11.2) into formulas (8.1), we obtain the so-calle_d 
LIENARD-WIECHERT POTENTIALS in electromagnetism 

4> = ___ q.,__ __ 

r'{l - n'v/c) 

__ ..,__ ___ , 

r"{l + n".v/c) 
A = ___ _,,q-'-v __ 

cr'{l - n'.v/c) 
qv ( 11. 3) 

cr"(l + n".v) 

It is extremely important to note that v, especially in the nominators of A , is 
the observation velocity of the charge q and not its advanced velocity v', as con­
ventional physics assumes {for the case when vis not constant), considering only 
the left parts of these equations and calling them wrongly "retarded" potentials. 
It must be absolutely clear that 4> and A in formulas (11.3) are the observation 
potentials, as the distances in (11.3) are the observation distances. 

Let me note that by considering in the nominators of A the observation velocity 
in the forms v = v' + u'(t -t') = v" - u"(t" -t), where v', v" and u', u" are the 
advanced and retarded velocities and accelerations, I could deduce the radiation 
reaction intensity directly from the potentials working with the most simple and 
rigorous mathematical logic (see Sect. 34). 

12. THE MAXWELL-MARINOV EQUATIONS 

Taking rotation from both sides of the first equation (7.13) and making use of 
the mathematical identities 

rot(grad4>) = 0, div(rotA) = 0, ( 12. 1) 

we obtain the FIRST PAIR OF THE MAXWELL-MARINOV EQUATIONS 

rotG = - as/cat, divB = 0. ( 12.2) 

Let us now take partial derivatives with respect to time from both sides of the 
first equation (7. 13), dividing it by c, 

aG/cat = - (1/c)grad(a4>/at) - (1/c 2)a2A/at2. (12.3) 

Write the second equation (9.13) in the form 

- {l/c 2),i2A;at2 
t,A + ( 4n/ C )'(If { 12.4) 

and put here the mathematical identity 
M = grad{divA) - rot(rotA). ( 12. 5) 

Substituting (12.4) into (12.3) and taking into account (7.16), we obtain 
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rotB = (1/c)aG/at -(4n/c)yrr. ( 12.6) 

Let us finally take divergence from both sides of the first equation (7.13) 

divG = -6¢ - (1/c)a(divA)/at. 

Write the first equation (9.13) in the form 

6¢ = (1/c 2)a 2¢/at 2 + 4nyµ. 

Putting (12.8) into (12. 7) and taking into account (7.16), we obtain 

di vG = - 4nyµ. 

( 12. 7) 

( 12 .8) 

( 12. 9) 

Equations (12.6) and (12.9) are the SECOND PAIR OF THE MAXWELL-MARINOV EQUATIONS. 

13. THE MAXWELL-LORENTZ EQUATIONS 

The analogues to the Maxwell-Marinov equations in electromagnetism are the farrous 

Maxwell-Lorentz equations. Here are the FIRST and SECOND PAIR OF THE MAXWELL-LORENTZ 

EQUATIONS (see formulas (12.2), (12.6) and (12.9)) 

rotE = - ( 1/c)aB/at, 

rotB = (1/c)aE/at + (4n/c)J, 

di vB = 0, 

di vE = 4nQ. 

Now I shall present the Maxwell-Lorentz equations in an integral form. 

According to Gauss theorem we have 

~ B. dS = f di vB dV , 
S V 

( 13. 1) 

( 13. 2) 

( 13. 3) 

where the integral on the. left side is taken over the closed surface S bounding the 

volume V, over which we take the integral on the right side. Using here the second 

equation (13. 1), we obtain 

¢ B. dS = 0. ( 13.4) 

This integral equation, which corresponds to the differential equation (13.1), as­

serts that the scalar flux of the magnetic intensity through any closed surface is 

equal to zero. 

According to Stokes theorem we have 

~ E.dr = frotE.dS, ( 13. 5) 
L S 

where the integral on the left side is taken along the closed line L bounding the 

surface S, over which we take the surface integral on the right side. Using here the 

first equation ( 13.1), we obtain 

~ E. dr = - ( 1/ c )( a/ at) f B. dS. ( 13.6) 
L S 

This integral equation, which corresponds to the first differential equation (13.1), 

asserts that the circulation of the electric intensity along any closed line Lis 

equal to the time derivative, taken with an opposite sign, from the scalar flux of 

the magnetic intensity through any surface bounded by this line. 
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The circulation of the electric intensity is also called ELECTRIC TENSION along 

the respective line and is denoted by U (do not confound this syntol with the sym­

bol for the electric energy). For the differential part dr of the line L we shall 

hav.e 
dU = E. dr. ( 13. 7) 

Let us turn now our attention to the second pair of the Maxwell-Lorentz equa­

tions. 

According to Gauss theorem we have 

t E.dS = {divE dV. ( 13.8) 

Using here the second equation (13.2), we obtain 

¢ E.dS = ·4n jQdV. ( 13. 9) 
S V 

This integral equation which corresponds to the second differential equation (13.2), 

asserts that the scalar flux of the electric intensity through any closed surface S 

is equal to the sum of the charges in the volume V bounded by this surface and mul­

ti p 1 i ed by 4n. 

According to Stokes theorem we have 

~ B.dr = /rotB.dS. ( 13.10) 
L S 

Using here the first equation (13.2), we obtain 

~ B.dr = (1/c)(a/at)JE.dS + (4n/c)fJ.dS. 
L S S 

( 13.11) 

The quantity 

Jdis = (l/4n) aE/at ( 13.12) 

is called DISPLACEMENT CURRENT DENSITY. Using this quantity (whose physical essence 

will be explained in Sect. 30), we can write (13.11) in the form 

~ B.dr = (4n/c)j(J + Jdis).dS. 
L S 

(13.13) 

This integral equation, which corresponds to the first differential equation (13.2), 

asserts that the circulation of the magnetic intensity along any closed line Lis 

equal to the scalar flux of the current and displacement current through any surface 

S bounded by this line. 

14. ENERGY DENSITY AND ENERGY FLUX DENSITY 

Let us multiply the first equation (13.1) by B, the first equation (13.2) by E, 

and then subtract the first from the second • 

f EI + !!. 38 + 4n J E + B rotE - E. rotB 0 
c·at c·at c · · · ( 14.1) 

Using the mathematical relation (seep. 6) 
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div(ExB) = B.rotE - E.rotB, ( 14. 2) 

we can write (14.1) in the form 

a E2 + B2 
- --- + J.E + ...£ div(Ex8) = 0. 
at BTT 4ir 

( 14. 3) 

Let us now integrate this equation over an arbitrary volume V containing our elec­

tromagnetic system and use the Gauss teorem for the last term 

2 2 
i f ~ dV + f J. E dV + 9 c ExB. dS = 0, 
at v BTT v 5 4TT 

( 14. 4) 

where the last integral is spread over the surface S of the volume V. 

Taking into account the second equation (9. 14), we can write 
n 

f J. E dV = I q. V . • E, 
v i = 1 1 1 

( 14. 5) 

where n is the number of the charges in the system. 

Putting this into (14.4) and taking into account equation (8. 7), assuming there 

S = - divA = 0, as this is a rather ad hoc introduced term, we obtain 

a E2 + B2 d n c 
-f--dV + - Le•+ - ~(ExB).dS = 0. 
at v 8TT · dt i = 1 01 4TT 5 

( 14. 6) . 

If we consider the integral on the right side as time (kinetic) energy, then, 

having iri mind the energy conservation law (2.15), we have to assume that the cor­

responding "particles" move with the velocity c away from the volume V and that in 

a unit of time the energy 

I = ...£ ExB 
4TT 

( 14. 7) 

crosses a unit surface placed at right angles to I, which is called (ELECTROMAGNETIC) 

ENERGY FLUX DENSITY. The quantity 

S = _l ExB 
4TT 

( 14. 8) 

is the density of this energy (at a snap shot) and is called the POYNTING VECTOR. 

It turns out (see Chapter IV) that E and B in the last term of (14.6) are to be 

considered as the electric and magnetic intensities radiated by the charges of the 

system and thus are to be denoted by Erad and Brad' Then E and B in the first term 

of (14.6.) are to be considered as the radiation electric and magnetic intensities 

radiated by the charges of the system which still have not left the volume V and 

thus are also to be denoted by Erad and Brad· The middle term in (14.6) is the change 

of the time energy of the system which, according to formulas (14.5) and (8. 7), is 

equal to the change of the potential electric energy of the system. Thus,for a given 

short time interval, the change of electric (or time) energy of the system is equal 

to the change of the radiated energy ~ the vo 1 ume V (given by the first term in 

(14.6)) plus the energy radiated outside the volume V (given by the third term in 

(14.6)). Thus E and Bin formula (14.6) do not represent the potential electric and 
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magnetic intensities, Epot' Bpot' but only the radiation electric and magnetic in­
tensities Erad' Brad· In Chapter IV we shall see that Erad = Brad and [rad.Brad = 0. 

Considering the potential electric and magnetic fields as physical realities, of­
ficial physics brought into the theory a big mess. I repeat, the potential electric 
and magnetic intensities are mathematical quantities which exist only in our heads. 
They ·have neither energy density (.the energy density near the charges will be infi­
nitely big and thus incalculable!) nor roomentum density. Meanwhile the radiated 
electric and magnetic intensities are physically existing quantities with the ener­
gy density 

( 14 .9) 

and rooment.um density I given by formula ( 14. 7). 

Concluding this chapter, let me say that the Maxwell-Lorentz equations are not 
some "physical" equations invented by somebody. They are the most trivial mathema­
tical deductions from the Newton-Lorentz equation (which in its official form can 
be found in Maxwell's "Treatise" and thus it is unjustified to call it "Lorentz 
equation") and the equations (9.16) connecting densities and potentials, which, 
from their part, are the most obvious results of the definition equations (8.1} for 
the potentials and the definition equations (9.14) for the densities. 

But neither the Newton-Lorentz equation is some "physical" equation, as it is a 
trivial mathematical result from the Coulomb law (axiom V), the Neumann law (axiom 
VIII), the form of the time energy of mass m rooving with velocity v (axiom VI) and 
the energy conservation law (axiom IX). I have, however, to emphasize that I spent 
3 years in Sofia of intensive mental work some 20 years ago to arrive at the deduc­
tion of the Lorentz equation from the mentioned four axioms, and IT!Y 1 ast 10 years 
in Graz to understand that at this deduction I had to take dA/dt in the fonn(7.9) 
and not without the term vdivA, as I did in Sofia, and to write it thus in the New­
ton-Lorentz form. Nicolaev's experiments, however, impelled me to introduce some 
changes in this term (see Sect. 24). 

Thus, according to me, in classical physics there are only four discoveries: 
1) Coulomb's law in electromagnetism and Newton's law in gravitation. 
2) Neumann's law (as a matter if fact, the coronation of Neumann's law as a fun-

damental physical axiom was done by me). 
3) The form of the time energy of a particle. 
4) The energy conservation law. 
As my own physical discovery, I consider the revelation of the Marinov-aether 

character of light propagation. In my CLASSICAL PHYSICS(S) the Marinov-aether cha­
racter of light propagation is introduced in the theory as an axiom (the tenth axiom~ 
I did not follow this way in the present book, as the volume of Sect. 2 had to be 
substantially increased, meanwhile I wish. to explain with this book what electromag­
netism is in the most laconic way. 

As another physical discovery is to be considered the introduction, rather ad hoc, 
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of the scalar magnetic intensity in its Whittaker's and Nicolaev's forms (see Sect. 

24), noting, however, that the form of the scalar magnetic intensity is still not 

established definitely. The "discovery" of the motional-transformer induction and 

the "invention" of the perpetua mobilia MAMIN COLIU, VENETIN COLIU and SIBEREAN CO­

LIU (see Chapter VI) are simple logical results to which all logically thinking 

children have to come alone when analyzing the Newton-Lorentz equation. Thus, accor­

ding to me, discovery is the creation of an axiomatical assertion (which is right!). 

The mathematical deductions from the axiomatical assertions cannot be discoveries. 

I do not consider the coronation of the potentials as the primary physical quan­

tities and the decoronation of the intensities as an achievemnt of some value, as 

those are obvious things and every logically thinking child has to come alone to 

these cone l us ions. Indeed, if A is given, then every ordinary chi 1 d is ab 1 e the ca 1-

cul ate quickly Etr' Band S, but if Etr' B and S are given neither the most extra­

ordinary professor is able to calculate A. 

Neither the establishment of space and time as absolute categories nor the rejec­

tion of the principles of relativity and equivalence can be considered as achieve­

ments of some value, as every normally thinking child accepts these assertions as 

true and not the oposite. 
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11I. L O W - A C C E L E R A T I O N E L E C T R O M AG N E T I SM 

15. INTRODUCTION 

Further I shall no rrore pay attention to gravimagretism and only some "neuralgic" 

aspects of electromagnetism will be treated. 

In Chapter III the acceleration of the electric charges of the system considered 

wi 11 be supposed low and thus their radiation wi 11 be neglected (it wi 11 be shown 

in Chapter IV that the energy radiated by the electric charges is proportional to 

their accelerations). 

The electromagetic equations obtained in Chapter II are for a system of single 

particles. But the electromagnetic systems with which we experiment only rarely con­

sist of single particles. The predominant part of the material systems are MEOLA 

which are b~ilt in a very complicated manner of single charged and uncharged parti­

cles. We shall disregard the way in which the media are built and we shall accept 

very simple models elaborated by humanity after centuries of experimental work and 

observations. It turns out that by accepting these genuine rrodels of the media, 

we can calculate a large quantity of the electromagnetic phenomena by the help of 

the simple equations deduced in Chapter II for a system of single particles. This 

simple approach to the problems of electromagnetism is called PHENOMENOLOGICAL AP­

PROACH. 

I shall work in this book with the most simple media: current conducting wires, 

condensers filled by air (vacuum) or by dielectrics and coils filled by air or by 

magnetics, appealing to the most general and elementary knowledges of the reader, 

elaborated in the secondary schools or by reading some popular booklets. 

16. RESISTANCE 

The ELECTRIC CURRENT I which flows in a metal wire (which will be called also 

CONDUCTOR) is the quantity of electr'ic charge dq which crosses its cross-section for 

the ti me dt 

I = dq/dt. ( 16. 1) 

The electric tension dU along a length dr of the conductor will be given by for­

mula (13. 7), where E will be the acting electric intensity which I cal 1 also DRI­

VING ELECTRIC INTENSITY. Consequently the tension U along the whole or a part of 

the conductor will be called DRIVING ELECTRIC TENSION. 

It was experimentally established (by Ohm in 1826) that the current flowing in a 

conductor is proportional to the electric tension between its end points 

= GU, ( 16.2) 

where the coefficient G which depends on the material substance of the conductor and 

on its geometry is called CONDUCTANCE. Equation ( 16.2) is called OHM'S LAW. 
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The conductance of a wire with a unit length and unit cross-section is called 

CONDUCTIVITY and is denoted by y. Thus the conductance of a wire with length Land 

cross-section Swill be 
G = yS/L. ( 16. 3) 

RESISTANCE R, which is much more used in practice, is the quantity inverse to 

conductance 
R = 1/G L/yS = pl/S, ( 16.4} 

where pis called RESISTIVITY and this is the resistance of wire with unit length 
and unit cross-section. Thus we can write 

U/R. ( 16. 5) 

If the resistance of a wire is zero, it is called SUPER-CONDUCTOR. 

Let us suppose that dq charges have been transferred along a conductor for a tim: 

dt, the tension between whose end points is U = 6¢, w~ere 6¢ is the difference be­
tween the electric potentials at the end points. According to the first formula 

(8.2), in which we have to write Ue, dq and 6¢ instead of U, q and¢, the electric 
energy of the system will change with 

dUe=dqM dqU=IUdt, (16.6) 

where equation (16. 1) was taken into account. 
The change of the energy in a ti me unit 

P = dU/dt 

is called POWER, and from (16.6) and (16. 7) we obtain 

P = IU = RI2 = u2;R. 

( 16. 7) 

( 16 .8) 

This power is liberated as heat in the conductor and is lost by the source sup­
plying the driving tension. HEAT is a physical phenomenon outside the domain of 

electromagnetism and for this reason Ohm's law cannot be obtained from my axioma­
tics. In "pure" electromagnetism, which is to be thoroughly explained by logical 
deductions from the axiomatics, the conductors must be super-conductors. 

Until the present time it is not clear how electric current propagates along me­
tal wires. The phenomenological model proposed by me(6) is the following: 

The so-called valence electrons, which are the current conducting electrons, are 
loosely connected with the ions of the metal lattice, jun-ping continuously from one 
atom to another and forming a kind of "electron gas" throughout the solid ions' 
lattice. If there is no electric tension applied to the wire, the motion of the va­
lence electrons is chaotic and their average velocity is zero. When an electric 

tension is applied to the wire (imagine, for simplicity, that an electric pulse is 
applied to the left end of the wire by supplying a surplus of electrons), the chao­

tically moving electrons from the left end, where the concentration exeeds the con­
centration of the valence electrons, begin to move with a preferred average velo­

city to the right, where the electron concentration is less. The average "DRIFT 
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VELOCITY" of the electrons, vdr' is of the order of mm/sec. This velocity can be 
easily calculated if assuming that~ valence electrons in the wire are current 

conducting electrons. However the velocity, ven' with which the "electrons' concen­

tr9tion" propagates through the wire, and which I call the ENERGY VELOCITY, is of 
the order of c, as can be established by measuring the velocity with which the cur­

rent pulse propagates. Thus, after a second the exceeding electrons which were sup­

plied to the left wire's end will be transferred to 1 mm, but the electrons' concen­
tration will be exceeding at a distance of 300,000 km. If the wire is not closed, 
the electrons' concentration will be reflected from the right end and returning back 

will be reflected from the left end, and so on, until the surplus electrons will be 
distributed uniformly troughout the wire and its surface will become equipotential. 

As the electrons are absolutely identical and indistingushable· one from another, 

we must conclude that in a second the exceeding electrons were transferred 11t a dis­
tance of 300,000 km. {Indeed, if 100 electrons in file move on 1 cm each in a second 

or the first electron moves on 100 cm, while the other 99 remain at rest, the phy­

sical result is the same.) 
If there is a consumer at the right end of the wire and the supply of surplus 

electrons at the left end is continuous, the electric energy from the supplier to 

the consumer will proceed along the wire with the velocity ven = c. 
It must be clear that the velocity of the single electrons is neither the drift 

velocity, vdr' nor the energy velocity, ven· Every electron moves chaotically. It is 
possible that some of the supplied surplus electrons may cover the whole wire with 
a velocity c and be always in the "electrons' surplus concentration". The probabi li­

ty for such a case is vdr/ven· Even in a wire without electric tension there is a 
possibility that some electron will cross it from one end to the other with a velo­

city c, however the probability for such a case is zero. Although the electric ener­
gy transferred along a wire is something material and can be measured in energy 

units transferred in a time unit along a length unit, official physics speaks about 
a foggy "propagation of interactoon", being unable to explain what a physical quan­

tity "interaction" is and with which measuring instruments and in which measuring 
units is to be measured. For certain official physicists the "interaction" propagates 

through the metal, for other it surrounds the conductor similarly to the aura 
which surrounds the human body according to the assertions of the Indian yogas. 

My friends Milnes(lO} and Pappas(ll) have done experiments for measuring the ve­

locity of propagation of current pulses along copper wires and have established 
that it is much higher than c, at least 10 or even 100 times higher than c. 

It turns out that only the directed motion of the electrons liberates heat but 
the chaotic motion does not. This result makes the hypothesis about the "electron 

gas" shaky. Thus after so many years. of e_xperimentation with currents in metal wires, 
one can make the conclusion: we still do not know the mechanism of propagation of 

the current. 



- 52 -

17. CAPACITANCE 

It is obvious that the potential difference (tension) between a charged conduc­

tor and other uncharged conductors in its neighbourhood ( the latter usually are 
connected to earth) will be proportinal to the electric charge q on the conductor 

U=(l/C)q, ( 17. 1) 

where the coefficient 1/C depends on the georretry of the whole system and C is cal­

led CAPACITANCE. The number C shows the quantity of electric charge with which the 
conductor is to be charged to increase its potential with unity respectively to 
the uncharged conductors. A material system which has capacitance is called CONDEN­

SER (one can use also the word CAPACITOR). 
Let us have a condenser consisting of two parallel plates of surface S, the dis­

tance between which is d. One can use equation (13.8) and the second equation (13.2) 
to find its capacitance. The volume of integration V will be chosen so that it con­
tains one of the plates, the charge density on which is Q. Designating the surface 

of the volume V by S', we shall have 

p E.dS = 47T fQdV = 47Tq, 
S' V 

( 17. 2) 

where q is the whole charge on the plate (the charge on the other plate is -q if 

the latter is not earthed). If d is small with respect to Is, we can assurre that 
the electric intensity is different from zero only between the plates, being there 
constant and perpendicular to the plates. Thus we shall have 

ES = 411q. (17.3) 

As E U/d, we obtain from here 

q = (S/47rd)U. ( 17 .4) 

Comparing this with (17. 1), we obtain for the capacitance of the parallel plate 

condenser 
C = S/47Td. ( 17. 5) 

We see from equation (17.4), if denoting the surface charge density by E = q/S, 
that the electric intensity between two nearly placed parallel plates charged ho­
mogeneously with surface charge density E is 

E = 47TL ( 17 .6) 

Let us find now the capacitance of a cylindrical condenser with coaxial plates 

with radii Ri and Re of the internal and external plates and length L, supposing 

Re - Ri « L. 

We use again formula (13.8) and choose the volume of integration V to contain 
only the internal cylindrical plate. Assuming again that E is different from zero 

only in the space between the plates where it is constant and perpendicular to the 
condenser's axis, we shall obtain from (13.8), if choosing the integration surface 
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crossing the space between the plates to be cylindrical with a radius r, 

E(211rL) = 411q. 

Thus the tension between the plates will be 

P-e P-e 

( 17. 7) 

U = f E.dr = (2q/L)/ dr/r = 2qln(R/Ri)/L. (17.8) 
Ri Rj 

Comparing this with (17.1), we obtain for the capacitance of the cylindrical conden­

ser 
( 17 .9) 

Denoting the surface charge density on the internal cylindrical plate by i:: = 

q/211RiL, we see from equation (17. 7) that_ the electric intensity between two nearly 

placed coaxial cylindrical plates charged honngeneously with surface charge density 

i::, at a distance r from the cylindrical axis, is 

E = 411l:R/r. ( 17 .10) 

From here, at r = Ri, we obtain formula (17.6) 

18. INDUCTANCE 

18. 1. INDUCTANCE OF A LOOP. 

Let us have a circuit in which current I flows. This current will generate the 

magnetic potential A(r) at a reference point with radius vector r. Let us take the 

line integral of A along a certain closed loop L. According to Stokes· theorem, ta­

king into account the second formula (8.6), we shall have 

~ A.dr = frotA.dS = f B.dS = ~. ( 18.1) 
L S S 

where S is an arbitrary surface spanned on the closed line L and ~ is called MAGNE­

TIC FLUX (electric potential and magnetic flux are designated by the same synbol 

and be attentive to not confound them!) crossing the surface S. 

If denoting by A
0 

the magnetic potential generated by a unit current flowing in 

the circuit, and if taking the line L to be the circuit itself, we shall have 

( 18. 2) 

where 

L = ~A
0

.dr = /8
0

.dS 
L S 

( 18. 3) 

is called INDUCTANCE of the circuit and B
0 

is the magnetic intensity generated by a 

unit current flowing in the circuit on the arbitrary surface S spanned on the cir­

cuit. Thus Lis the magnetic flux generated by a unit current flowing in the cir- -

cuit through any surface S spanned on the circuit. 
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18.2. INDUCTANCE OF A CIRCULAR LOOP. 

Let us calculate the inductance of the rost sirrple circular circuit (fig.2). 

We take the reference frarrewith origin at the center of the loop and we shall 

calculate first the magnetic potential generated by an arbitrary current el errent at 

an internal (in the loop) and at an external (outside the loop) reference point, 

both lying_ on the positive x-axis. Let us denote the distance from the frarre 's ori­

gin to both reference points by pint and Pext' and from the loop's elerrent by rint 

and rext· The radius of the circular loop is denoted by Rand the angle between the 

x-axis and the radius vector to the loop's elerrent (which, for definiteness, let us 

consider in the first quadrant) by¢. The flow of the current will be taken in the 

positive direction (i.e., counter-clockwise). 

If dq is the quantity of electric charge which for a tirre dt is transferred 

through the cross-section of the wire, we can write cqv = ci:jdr/dt = Idr, where I = 

dq/dt is the flowing current, dr is the line elerrent of the loop taken along the 

current, and the expression Idris called CURRENT ELEMENT. Resolving the vector of 

the current elerrent into a horizontal and vertical components, we see that the ac­

tions of the horizontal components of two symrretri c current el errents in the 

first and- fourth quadrants will annihilate one another, so that only the action of 

the vertical corrponent will remain. Thus we concude that the magnetic potential at 

the internal and external reference points originated by both symrretric current ele­

rrents in the first and fourth quadrants will be parallel to the y-axis. For the ab­

solute value, according to the definition formula for A (8.1), we obtain 

dA = 2 I drcos¢ = 2IRcos¢ d¢ , 
er c(p 2 - 2pRcos + R2 ) 112 

(18.4) 

where by rand p either the internal or external distances are denoted, and we put 

dr = Rdp. 

To obtain the magnetic potential originated by the current in the whole loop, we 

have to integrate formula (18.4) for¢ changing from Oto 11, thus obtaining 

A= JdA = ~ f cos¢d¢ 
c o (i - 2pRcos¢ + R2 ) 1/ 2 111 

C 

(for p < R), 

R2 

( P
2 2 1/2 (for P > R l: 

- R ) 
( 18.5) 

The value of the elliptical integral in (18.5) can be found in a standard table 

of integrals. This formula shows that the magnetic potential increases rapidly from 

0 at the center of the loop to infinity at the loop, and then it decreases slowly 

to Oat infinity. 

As the magnetic potential of a circular loop has rotational symrretry, the magne­

tic intensity produced by it can be calculated immediately, using the expression for 

rotation in cylindrical coordinates, taking A= (AP, A¢, A
2

) = (0, A, 0), where for 
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y 

R 

Fig. 2. Circular loop in which current flows. 

A the expressions (18.5) are to be taken, 

B rotA = .!. ~ z 
P ap 

{for p < R), 7TI 2R2 - l " ------z 
C (R2 _ i)3/2 

rrI R2 " 
- - 2 2 3/2 z {for P > R). 

c ( p - R ) 

X 

( 18.6) 

This formula shows that the magnetic intensity increases from (2rrl/cR)z at the 

center of the loop to 00 z at the loop inside and then decreases from - ooz at the 

loop outside to Oat infinity. 

Let us calculate the inductance of the circular circuit according to the second 

formula ( 18. 3) for p < R 

L = fB
0

.dS =::. f 2R
2 

- i 27Tp dp 2rr2 2rr2 R2 IR ( 18. 7) =-R +- i) 1/2 0 = oo, s C O (R2 _ p2)3/2 C C (R2 

We see that by substituting the limit "R" in the solution on the right side, we 

obtain infinity. Thus the inductance of a circular infinitely thin loop is infini­

tely large. 

If the radius of the circular wire is r, we have to di vi de the integral ( 18. 7) 

into two integrals: one in the limits from Oto R - r, in which the magnetic inten­

sity in the circle of radius R - r is generated by the whole current (in our case 

I = 1), and one in the limits from R -r to R, in which the current is·a function of 

the integration variable. In our case we have to take I " (R-p)/r, ·if the current 
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is distributed homogeneously across the wire's cross-section. As, however, one needs 

to know the inductance for alternating currents, we have to take into account the 

SKIN EFFECT, according to which there will be roore current near the cylindrical sur­

face of the conductor and less along its axis, so that the calculation becomes roore 

complicated and the inductance of a loop becomes dependent on the current frequency. 

Thus, for horoogeneously distributed current, the integral (18. 7) must be separa­

ted into the following two integrals 

2 R-r 2R2 2 
L = :r_ J -o 

C O ( R2 _ i) 3/2 

The calculation of the second integral is pretty co~licated but· in a good appro­

ximation (good enough for any practical use) we can solve it as follows: Let us mul­

tiply and divide the second integrand by R+o and let us put p = R everywhere in the 

second integrand besides the expressions R2 -p 2 . 

The values of the two integrals in ( 18.8) wi 11 be 

L 211
2

(R - r)
2 

+ 11
2

R(2R - r) 

c(2rR -r2)1/ 2 c(2rR-r 2 )1/Z 
( 18.9) 

where the res ult on the right is obtained by ne9lecti ng r with respect to R. 

Thus the first integral in ( 18.8) gives only the half of the right value. 

Scott{l_Z) also tried to find the inductance of a circular wire and after horrible 

calculations, where the physical substance of the problem was completely lost, obtai­

ned the following result 

Lscott = (411/c)R{ln(8R/r) - 7/4}. ( 18.10) 

Scott's formula is definitely wrong, as the truncated first integral (18.8), 

which I shall denote by Ltrunc and which gives a value definitely lower than the 

true inductance Ltrue• is always larger than Lscott· Here are the relations 

Ltrunc/Lscott for R/r = 10; 100; 1000: Ltruncllscott= 1.11; 2.21; 4.84. The rela­

tions of the true enough inductance L given by the value on the right of (18.9) to 

Scott's value for the same ratios R/r are: L/Lscott = 2.74; 4.51; 9.71. 

There are also two aesthetical reasons showing that Scott's formula is wrong: 

1) His theretical deroonstration is too coll'plicated and MARINOV'S RAZOR says: Ogru 
teoJu.a. compi'.-i.ca.ta e 1.,bagl..iata.. 2) The nurrtier 7/4 indicates that something is rot­

ten in the formula: the Divinity cannot put this nullber in a formula describing 

such a syITTTietric ·effect. 

King(l 3 ) gives in Handbuch deJr. Phy1.>iR, the roost authoritative source of physics 

knowledge, the following formula for the inductance of a circular loop 

Lking (411/c){R(R+r)} 112{(2/k -k)K(11/2,k) - (2/k)E(11/2,k)}, ( 18. 11) 

where 
k = (1 - k'Z)l/2' k' r/(2R+r), ( 18. 12) 

and 
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n/2 
E(n/2,k) = f (1 - k2sin2¢)l/ 2d¢ 

0 
{ 18. 13) 

are the complete elliptic integrals of first and second kinds which are tabulated 
as ·functions of k. 

When R/r is sufficiently large, k' is small and the elliptic integrals may be 
expounded in powers of K'. For the leading terms King has obtained 

Lking = (4n/c)R{ln{8R/r) - 2}. ( 18 .14) 

King's formula is very near to Scott's formula, and this is an indication that 
both authors have calculated well. Why then are their formulas wrong? - According 
to me, the explanation for the substantial difference between l1Tf formula (18.9), on 
one side, and formulas (18.10) and (18.14) of Scott and King, on the other side, is 
that they have done the calculations proceeding from the first formula (18.3) (as a 
matter of fact, from (18.16)), while I did the calculation proceeding from these­
cond formula (18.3). MY way is mathematically simple and straighforward, the ways 
of Scott and King are horribly complicated, as they lead to elliptical integrals. 

Nevertheless, as the left and right formulas (18.3) are mathematically indenti­
cal, one has to obtain identical results. I leave to the mathematicians the honour 
to find why the calculations of Scott and King have led to a wrong result. 

18.3. NEUMANN'S FORMULA: 
Returning to formula (18.3) and taking into account that 

A= ~Idr/cr, A
0 

= ~dr/cr, 
L L 

{ 18.15) 

we can write the left side of formula (18.3) in the form 

L = 1 ~dr.dr'/cr. { 18.16) 
L L 

Let us have now two circuits L1 and L2. Let us take the line integral of the mag­
netic potential A1 generated by the current I1 in the first circuit along the con­
tour L2 of the second circuit. Using again Stokes theorem, as in formula ( 18.1), we 
sha 11 have 

~ A1.dr2 = f rotA1.ctS2 = f B12.dS2 = ~12, 
L2 s2 s2 

(18.17) 

where S2 is an arbitrary surface spanned on the closed line L2 and ~12 is the mag­
netic flux generated by the current in the loop L1 which crosses the surface of the 
loop L2, If Ai is generated by a unit current and if taking into account formula 
(18.15), we can write for the MUTUAL INDUCTANCE of L2 due to the unit current in L1 

L12 = ~ A01.dr 2 = ~-~ dr1.dr 2/cr 12. (18.18) 
L2 L1 L2 

This is called the FORMULA OF NEUMANN and obviously L12 = L21. 
Now the inductance (18.16) can be called SELF-INDUCTANCE and denoted by L11. 
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If we have N circular loops with the sarre radius overlapping one another and if 

the conman radius of their filarrents is much less than the loop's radius, we can 
make the following conclusion: The self-inductance of every loop will be L (see 
(18.91) and the mutual inductance of every loop caused by the other N-1 loops will 
be (N-l)l. Thus the inductance of all N loops will be N2L. 

If the distances between the loops are considerable and their positions one with 
respect to another arbitrary, every single mutual inductance will be less than L, 
and thus the inductance of the whole system will be less than N2L. 

let rre note that if the currents I1 and I2 are flowing, respectively, in the 
coils l1 and L2, the mutual inductance of whom is l12, then the mutual magnetic 
energy of the currents in these two coils will be (see (2.14) and (18.18)) 

2 2 
W12 = - ~ ~ qlvl.q2v2/c r12 = - ¢' I1dr1.I2dr2/c rl2 

ll ~ ll l2 

where the relations I1dr1 = q1v1, I2dr2 = q2v2 have been taken into account. 
As a matter of fact, I called equation (2.14) Neumann's law when proceeding from 

formula (18.19). 
For the magnetic energy of the current elements in a single coi 1 with self-induc­

tance L we shall have 
W = - (l/2)LI 2 (18.20) 

and it is a negative quantity, meanwhile in any official text-book on electromagne­
tism this energy is taken wrongly as a positive quantity. 

It is easy to see that on the right side of (18.20) the coefficient 1/2 is to be 
taken, as at the integration in (18. 16) we take once the product of dri with drJ and 
once the product of drj with dr1, so that we shall obtain twice their magnetic ener­
gy. Of course, we can write (18.20) without the factor 1/2 but then this factor is 
to be put in formula (18.16). 

I have, however, to emphasize that the calculation of the self-inductance accor­
ding to formula (18.16) inevitably leads to improper integrals, as the distance rii 
between the element dri at the one integration along Land the element dri = dri at 
the other integration along the same contour Lis zero. Perhaps here is to be sear­
ched for the wrong ca 1 culations of Scott and King. 

18.4. INDUCTANCE OF AN INFINITELY LONG SOLENOID. 
let us consi de!' N circular loops of radius R with a common axis and having the 

same distance one from another, in which current I flows. We can assume, for mathe­
matical rigorosity, that the N circular loops are independent and any has its own 
source of electric tension, but, of course, we shall have in mind that all loops are 
connected, building thus a COIL, and that there is only one source of electric ten­
sion. Such a cylindrical coil is called also SOLENOID. If the length of the soleno­
id is 1, there will be n = N/1 TURNS (of WINDINGS) on a unit of its length. When l 



- 59 -

tends to infinity, the solenoid is called INFINITE. 

The magnetic potential in the plane of any circular loop generated by its own 

current is given by formula (18.5). The magnetic potential generated in a plane 

whqse distance from the loop's plane is z will be 

(18.21) 

The magnetic potential generated by all windings of an infinite solenoid at a 

point with cylindrical coordinates p, cp, z will be 

N= 2 IR 00 'IT <P d<P A= l A. = - fndz f ___ c_os_-'-~---,,---
i=l 1 c o o (p 2 - 2pRcoscp + R2 + z2 ) 1/ 2 " 

( 18. 22) 

This integral can be evaluated by dividing it in two parts, from Oto n/2 and from 

n/2 ton, writing in the second integral n - cp for cp and interchanging its 
2 · 2 . 2 

Denoting then a
1 

= p - 2pRcoscp + R, and a
2 

= p2 + 2pRcoscp + R , we shall 

2nIR 
00 

n/ 2 1 
A= -c- fdz J coscp d<P{ 

2 2 112 o o ( a1 + z ) . 

Interchanging now the order of integration, we can easily take the integral 

2n1Rn/2 a2 z + (z2 + ai)l/2100 2nlR n/2 . 
A = -c- f coscp dcp ln{- 2 2 112

} = -- J coscp d<P ln ( a/a 1) = 
o a 1 z + ( z + a

2
) o c o 

n/2 2 2 
2nIR f coscp dcpln{P + 2pRcosp + R }. 

c o p2 - 2pRcoscp + R2 

1 imi ts. 

have 

( 18.23) 

on z 

( 18.24) 

Let us denote ex= 2pR/(i +R2 ) and use integration by parts, the one part being 

coscpdcp and the other the logarithm. The integrated part vanishes and the integral, 

except for the factor 2nlR/c, becones 

2ex f s,n cp dcp = _g_{cp - (1 -ex2 ) 112arctan tancp } , 
n/2 . 2 l'IT/2 

o 1 - ex2cos 2cp ex ( 1 - ex2 ) 1/ 2 o 

as the reader can readily verify by di fferenti ati on. 

The expression arctan{tancp/(1 -cx2)1/ 2 } approaches n/2 as cp-+ n/2. Using 

( l -cx2)1/2 

we obtain 

(p 4 - 2iR 2 + P4 ) 112/(l + R2 )';; 1i - R
2 !!(l + R

2
), 

A = 2nIR P2 + R2 ~( 1 - I P2 - R2 I) 
c pR 2 i + R2 . 

Thus 
2nnlp/c, 

A = 
2nnIR 2/cp, 

8 
= .!.~ = 4nnl/c, (for p < R), 

P ap· o, (for p > R). 

( 18.25) 

( 18.26) 

( 18.27) 

( 18.28) 

The inductance of one loop of this infinite solenoid, according to both formulas 

( 18. 3), wi 11 have the value 
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L = 4TT2nR2/c = 4TTnS/c 4TTNS/cl, ( 18. 29) 

where S = TTR2 is the cross-section of the solenoid. 

The inductance of all N = nl loops of the solenoid will be 

L = 41r2n21R2;c = 4TTn2lS/c = 4TTN2S/cl. (18.30) 

Thi~ formula remains valid for a final solenoid if l is big enough with respect 

to R. Otherwise the inductance of the solenoid will be less than (18.30). 

19. RESISTORS, CAPACITORS AND INDUCTORS 

Every conductor has a certain resistance, capacitance and inductance. Conductors 

for which only one of these qualities is predominant are called, respectively, RE­

SISTORS, CAPACITORS (condensers) and INDUCTORS. An IDEAL RESISTOR is this one whose 

capacitance and inductance are (or can be accepted) zeros. An IDEAL CAPACITOR is 

this one whose resistance and inductance are zeros. An IDEAL INDUCTOR is this one 

whose resistance and capacitance are zeros. 

In Sect. 16 the energetic aspects of the resistors have been already considered. 

Let us now consider the energetic aspects of capacitors and inductors. 

To charge a condenser having capacitance C with total charge q
0

, we have to spent 

the following energy (see the first formula (8.2) in which we have to exchange the 

potential difference 6~ by the tension U) 

qo qo 
u = f Udq = f (q/C)dq = q~/ZC = cu

0
2;2, 

e o o 
( 19. 1) 

where U and q are the variable tension and electric charge of the condenser during 

the charging and U
0 

is the tension of the charged condenser. This energy will be in­

vested as MECHANICAL ENERGY ("mechanical energy" is another name of kinetic energy) 

because always when we add a new portion of charge dq the repulsion from the side 

of the charges on the condenser q becomes greater and gretaer. The electric energy 

Ue stored in the condenser can then be liberated when discharging it. 

Usually a condenser is charged by a SOURCE OF ELECTRIC TENSION. The sources of 

electric tension can be chemical (a CELL, called also a BATTERY), thermal {thermo­

couple), _mechanical {friction of two solid bodies), piezoelectric (appearing at an 

increased pressure on a solid body), induced (see Sect. 21). Every source of electric 

tension has its own resistance, called internal resistance and denoted by Ri. If 

Ri = 0, the source is called IDEAL. 

The tension produced by a source of electric tension is called usually DRIVING 

(ELECTRIC) TENSION and is denoted by Udr" For Udr official physics uses the very 

bad term ELECTROMOTIVE FORCE. Also the very bad term VOLTAGE is used for electric 

tension. 

A charged condenser is also a source of electric tension. If we connect its 
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p 1 ates by a conductor with zero resistance, it wi 11 discharge_ rrorrentarily with an 

infinitely large current. 

Let now discharge a condenser with capacitance C through a resistor with resis­

taJ)ce R. The sum of the tensions on the condenser and on the resistor must be zero 

and thus we can write 

RI + q/C = 0 or Rdq/dt = - q/C, ( 19. 2) 

where q is the charge on the condenser at the morrent t. The differential equation 

(19.2) can be solved directly and its integral is 

Taking the integral, we obtain 

ln(q/q
0

) = - t/RC 

and we have further 

t 
(1/RC) I dt. 

0 

or 

I = (q /RC)e-t/RC = (U /R)e-t/RC = I e-t/RC' 
0 0 0 

( 19. 3) 

( 19 .4} 

( 19.5) 

The value RC is now seen to be the tine it takes the charge, current and poten­

tial to drop to 1/e = 0.368 of its initial value and is called the TIME CONSTANT of 

the circuit containing the capacitance C and the resistance R. 

Now if we charge up a condenser with a cell of driving tension Udr and wires of 

total resistance R (including the eventual internal resistance Ri of the cell), the 

driving tension must be equal to the sum of the tensions on the resistor and on the 

condenser 

udr = RI + q/C or CUdr = RCdq/dt _+ q. ( 19 .6) 

To solve this differential equation in the form of the indefinite integral as 

above, let us define the charge Q = CUdr - q as the difference between-the final 

charge CUdr on the condenser and its value q at any ti rre t. Then q = CUdr - Q and 

dq/dt = - dQ/dt, so that equation (19.6) reads 

or 

Thus we obtain as above 

CUdr = - RCdQ/dt + CUdr - Q, 

dQ/Q = - (1/RC)dt. 

Q = Q e-t/RC, 
0 

and as for q O there is Q
0 

CUdr• we have 

Cu Cu -t/RC 
dr - q = dre ' 

which rearranges to 

from which we derive 
I = U e - t/ RC/ R 

dr ' 
U=U (1-e-t/RC) 

dr • 

Let us consider now an ideal inductor with inductance L. 

( 19. 7) 

( 19 .8) 

('19.9) 

( 19. 10) 

(19.11) 

( 19 .12) 
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If the current in the inductor changes, an electric tension will appear in the 
inductor directed oppositely to the driving tension producing the current. The value 
of this electric tension can be found proceeding from the Newton-Lorentz equation 
{8.5); Putting in this equation ~"' 0, v"' O, as the inductor is not charged elec­
trically and is at rest, we shall find for the global electric intensity which in 
this case J shall call INDUCED ELECTRIC. INTENSITY 

Eind "' - aA/cat, ( 19 .13) 

where A is the magnetic potential along the inductor. 
For the INDUCED ELECTRIC TENSION which will appear along the whole length of the 

inductor L (do not confound the length of the inductor with its inductance) we shall 
have (see (18.2)) 

Uind"' ~Eind'dr = - (a/cat)~A.dr = - (a/cat)fB.dS = - a~/cat = - Lal/cat, (19.14) 
L L S 

where Bis the magnetic intensity through the surface S spanned over the contour L 
of the inductor (or the sum of the surfaces spanned on its single windings), ~ is 
the~ magnetic flux and I is the current flowing in the inductor. Equation 
(19.14) is called FARADAY'S LAW, although it is the most trivial result from the 
Newton-Lorentz equation. 

Equation (19.14) shows that only when the magnetic potential along the inductor's 
wires changes in time, an induced electric intensity and thus also induced electric 
tension do appear. And the magnetic potential changes in time only when the current 
changes in time. 

I repeat here the statement presented in many of rey articles: Electromagnetism 
can (and has to) be explained operating only with the potentials. One introduces 
the notion "intensities" (and "fluxes") only for mathematical or mnemonic convenien­
ces. So, for example, working with the intensity and not with the potentials, I "cal­
culated" in Sect. 18 the inductance of a circular loop much more easily than it can 
be done if working with the potential. On the other hand, however, the calculation 
with the intensities may lead to wrong results (see Sect. 22), as the intensities 
are derivatives of the potentials and contain less mathematical information. 

Let us now make a circuit of an ideal inductor with inductance L, a resistor of 
resistance Rand a cell with driving tension Udr· The driving tension plus the in­
duced tension must be equal to the tension on the resistor, called also OHMIC (ELEC­

TRIC) TENSION, 
or Udr = RI + LdI/cdt. ( 19 .15) 

Let us multiply this equation by the charge dq = Idt which has passed for a time 
dt along the circuit, i.e., from the positive electrode of the source to its nega­
tive source, and integrate then the equation for the time from Oto t 

t t lo 
Judridt JRI2dt +f LidI/c, (19. 16) 
0 0 0 
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where I = 0 is the current at the initial zero rroirent and I0 =· Udr/R is the current 

when dI/dt = 0. 

The integral on the left gives the energy lost by the source, the first integral 

on.the right gives the energy liberated as h~t in the resistor and the second inte­

gral on the right gives the magnetic energy 

2 
W = - LI/2c ( 19 .17) 

taken with an opposite sign, as according to equation (2. 15) the electromagnetic 

energy of a system is equal to the difference of its electric and magnetic energies. 

The magnetic energy (19. 17) is stored in the inductor which can be then liberated 

when shortcircuiting the driving tension. 

At such a short-circuiting of the external driving tension Udr, the driving ten­

sion in the circuit will be the induced tension and it must be equal to the ohmic 

tension 

or - LdI/cdt = RI. ( 19 .18) 

This is a differential equation of the form of the equation (19.3) and the solu­

tion, by analogy with the solution (19.4), will be 

I = I e-cRt/L 
0 • ( 19 .19) 

where t = 0 now refers to the tiire of the short-circuiting of the source. 

Let us find the arrount of heat liberated in the resistor. From the equation 

( 19.18), after the multiplication by Idt and integration for the ti ire from t = 0 to 

t = 00 , we obtain 
00 0 

fRI
2

dt = - L f IdI/c = Ll~/2c, 
o . I

0 

( 19.20) 

which is just the extra amount of energy originally provided by the cell and "pum,­

ped" in the inductor. Now, at the short-circuiting of the external driving tension, 

this energy will transform in heat in the resistor. 

If there is a circuit with a source of driving tension, resistor, capacitor and· 

inductor connected in series, Udr -and Uind = - LdI/cdt must be equal to the sum of 

the tensions on the resistor, RI, and on the condenser, q/C, and rearranging we have 

t 
Udr = RI + q/C + LdI/cdt with q = fidt. ( 19 .21) 

0 
The solution of this differential equation for a harrronic driving tension is gi-

ven in Sect. 54.2 and I show then that it obviously violates the energy conservaton. 

At the end of this section let ire give the formulas for the resistance, capaci­

tance and inductance of two resistors, capacitors and inductors connected: 

In series: R = R1 + R2 , 1/C = 1/Cl +. l/C 2 , L L1 + L2 , ( 19. 22) 

In parallel:1/R l/R 1 + l/R 2 , C = c1 + c2 , 1/L 1/Ll + 1/L2. ( 19 .23) 

Indeed: 

1) For two resistances in series we have U = u1 + U2, i.e., RI R1I + R2I, and 
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for two resistance in parallel we have I = 11 + 12, i.e., U/R = U/R1 + U/R2, 
2) For two condensers in series we have U = U1 + U2, i _-e,, U/C = U/C1 + U/C2, as 

the charges on condensers in series are equal, and for two condensers in parallel 
we have q = q1 + q2, i.e., CU= C1U + C2U, as the tensions on two condensers in pa­
rallel are equal. 

3) For two inductors in series we have U = U1 + U2, i.e., -Ldl/dt = - L1dI/dt -
L2dI/dt, and for two inductors in parallel we have I = I1 + I2, i.e., U/wL = U/wL1 + 

U/wL2, where w is the frequency of the alternating current (see Sect. 54.2). 

20. DIELECTRICS AND MAGNETICS 

20.1. DIELECTRICS. 
Any redium is current conducting but the differences in the conductivities of 

the different media may be very large. The redia with h.i gh conductivity are called 
CONDUCTORS, with low conductivity INSULATORS (or DIELECTRICS} and with redium con­
ductivity SEMI-CONDUCTORS. 

If a conductor is placed in an electric .field, its side which points along the 
field wil_l becorre charged positively arid the opposite side, pointing against the 
field, negatively. This effect is called ELECTRIC POLARIZATION BY INDUCTION (short­
ly INDUCTION POLARIZATION} or ELECTROSTATIC INDUCTION. 

If a dielectric is placed in an electric field, it becorres also polarized. We 
call this kind of electrostatic induction DIELECTRIC (or MOLECULAR) POLARIZATION. 
The difference between these two kinds of polarization is that the positive (resp., 
negative) charges provoki~g the induction polarization can be taken away and the 
conductor will then remain charged as a whole negatively (resp., positively), while 
the "polarization ·charges" of a dielectric cannot be taken away, and we call them 
BOUND CHARGES. The induction polarization appears because the FREE CHARGES (elec­
trons) of the conductor increase their concentration at one side of the body and 
decrease it at the opposite side in an external electric field, while the dielec­
tric polarization appears because the molecules of the dielectric become polarized, 
i.e., the.one end of the molecule becomes positive and the other end negative (the 
molecules of certain redia can always be polarized but they arrange themselves along 
a definite direction only in an external electric field. 

The physical essence of the molecular polarization as well as the physical es­
sence of the conduction of current are not clear enough. 

Further only the dielectric polarization will be considered. 
Let us have a parallel plate condenser between whose plates a dielectric is pla­

ced. When applying to the condenser a certain external tension U, on the left of 
its plates N positive charges will appear and on the right N negative charges. Af­
ter the polarization of the dielectric (which appears with a certain very short re­
tardation), on the left side of the dielectric N - 6N negative charges will appear 
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and on its right side N - 6N positive charges. The negative bound charges on the 
left dielectric's surface will attract by induction other positive charges from the 
positive electrode of the source of driving tension and the charge on the left con­
denser's plate will increase, causing further increase of the bound charges on the 
left dielectric's surface. This process will go on until an equilibrium will be in­
stalled (the saire appears on the right plate of the condenser). At the equilibrium 
state there will be 4rrxN negative charges on the left dielectric's surface and 
N + 4rrxN = N(l + 4rrx) positive charges on the left condenser's plate, where xis 
called ELECTRIC SUSCEPTIBILITY of the dielectric and 

E = 1 + 4rrx (20.1) 

is called PERMITTIVITY of the dielectric (in the system SI one writes £ = 1 + x), 
Now the electric intensity generated by the charges on the condenser's plates, 

called ELECTRIC DISPLACEMENT, will be 

where 
D =EE= (1 + 4rrx)E E + 4rrP, 

P = xE 

(20.2) 

(20.3) 

is called ELECTRIC POLARIZATION of the dielectric and it is 1/4rr part of the elec­
tric intensity generated by the bound electric charges on the right and left surfa­
ces of the dielectric. 

The tension acting on the condenser U = £. d ( d is the di stance between the con­
denser's plates) before putting the dielectric and after putting it is the .same, 
thus the electric intensity between the plates also remains the same, E, and it is 
the sum of the electric intensity D produced by the charges on the condenser'S plates 
and the electric intensity - 47f)(E = - 4rrP produced by the bound charges on the left 
and right surfaces of the dielectric. Thus the physically right equation is not equa­
tion (20.2) but the following one 

E = D - 4rrxE = D - 4rrP. (20.4) 

The electric displacement D cannot be measured. One can measure only the electric 
intensity E by making, for example, a narrow cut in the dielectric of the condenser 
and by putting there the measuring instrument. 

20.2 MAGNETICS. 
An inductor along which current flows is cal led ELECTROMAGNET (or shortly MAGNET). 

A solenoid is the most simple magnet. The centers of the solenoid's end windings are 
called POLES. NORTH POLE is the one from which one sees the current in the windings 

· flowing counter-clockwise, and SOUTH POLE is the one from which one sees the current 
flowing clockwise. A small magnet is called also MAGNETIC DIPOLE. 

According to the older concepts, the molecules of the media are magnetic dipoles. 
Usually these dipoles are pointing chaotically in all space directions. When put in 
an external magnetic field B, the magnetic dipoles arrange themselves along the 
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field and the medium becomes magnet as a whole. The molecules may be not magnetic 

dipoles but they can become such only when the medium is put in an external magnetic 

field. This effect is called MAGNETIZATION and magnetizable medium is called MAGNE­

TIC. 

According to the now-a-day concepts not the whole molecule is a magnetic dipole 

but only the electrons are such magnetic dipoles with a strictly determined dipole 

moment and a strictly defined angular momentum, called SPIN, which is parallel to 

the magnetic dipole moment. When a magneti·c is put in an external magnetic field 

those are the magnetic dipole mon-ents of the electrons which arrange themselves 

along the field and so the magnetic becomes a magnet. 

Let us put a magnetic in a long.solenoid whose magnetic intensity is B = (411nl/c)z 

(see formula (18.28)). The magnetic field produced by the magnetic after its magne­

tization in the solenoid (which appears with a ce·rtain tin-e retardation, especially 

when the magnetic goes out of the solenoid - see the Ewing effect in Sect. 54.5) 

is 
411M = 411xrrl3, (20.5) 

where Mis called MAGNETIZATION of the magnetic (it is equal to 1/411 part of the 

magnetic intensity produced by the magnetic) and Xm is called MAGNETIC SUSCEPTIBILI­

TY. 

The resultant magnetic intensity in the solenoid will be 

(20.6) 
and 

µ = 1 + 411xm (20.7) 

is called PERMEABILITY of the magnetic (in the system SI one writes µ = 1 + Xml• 

Thus the resultant magnetic intensity is the sum of the initial magnetic intensi­

ty Band the magnetic intensity (20.5) produced by the magnetized magnetic, so that 

(20. 6) is the physically right equation. 

Usually one denotes the initial magnetic intensity by Hand the symbol B is pre­

served for the final magnetic intensity when the magnetic is put in the electromag­

net, caning it in this case MAGNETIC INDUCTION (or MAGNETIC FLUX DENSITY). With these 

notations equation (20.6) is to be written as follows 

B = H + 411M = µH. (20.8) 

I am definitely against this separation. The magnetic intensity H and the "magne­

tic induction" Bare not two different physical quantities. Whether in the solenoid 

there is a magnetic or another solenoid generating the~ additional intensity 

411M = 411xrrl3, there areabsolutely !!2_ differences in the physical effects produced by 

these two systems. For this reason I shall very often use the word "magnetic inten­

sity" both for H and B, and often I shall use the symbol B for H and the symbol B 
. µ 

for the "magnetic induction" B, trying to emphasize in this way. that between B and 
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H there is no principal physical difference. 

The nost tragic thing is that in the measuring system SI H and B are measured in 

different measuring units. For this reason this system must never be used in theore­

tic.al considerations when one wishes to understand the physical essence of the ef­

fects in electromagnetism. 

And I should like to note that there is a substantial difference between dielec­

trics and magnetics. The dielectrics make only a new distribution of the available 

electric intensity, while the magnetics generate new magnetic intensity. As I alrea­

dy said, if one will cut a narrow slot in the dielectric of a parallel plate conden­

ser, one will measure exactly the same electric intensity E which one will measure 

at the same point if there is no dielectric. However if one will cut a narrow slot 

in the magnetic of a solenoid, one will measure aµ times higher magnetic intensity 

than in the case where there is no magnetic. Thus the characters of dielectrics and 

magnetics are totally different and those who try to present electric polarization 

and magnetization as two similar phenomena do a big harm. 

If Xm < 0, the MEDIUM is called DIAMAGNETIC, if Xm = 0, the medium is called NON­

MAGNETIC, if Xm > O, the medium is called PARAMAGNETIC and if Xm » 0, the medium 

is called FERROMAGNETIC. 

The magnetic induction B in ferromagnetic materials depends not only on H but al­

so on the "hystory", i.e., on the magnetic intensities which have acted on the mate­

rial before putting it in the field of the magnetic intensity H. The dependence of 

Bon the "hystorical" H (fig. 3) is called HYSTERESIS. 

Let at the intial moment the ferromagnetic material be not magnetized. Thus if 

B 

-l (Reversible permeability) 

H 

Fig. 3. The hysteresis loop. 
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the external magnetic intensity His zero, the magnetic induction B produced by the· 
magnetic will be zero. If H will begin to increase positively, B will also begin to 
increase positively and the dependence B = f(H) wi'll be presented by the dashed line 

which ~egins from point 0. After coming to sorre maximum magnetic intensity Hmax' let 
begin to diminish H. When coming at H = 0, the magnetic induction produced by the 
magnetic will be Br and is called RESIDUAL (or REMANENT) MAGNETIC INDUCTION. After 
changing the direction of the magnetic intensity and letting it increase negatively, 
we shall arrive at the intensity -Hc when the magnetic induction produced by the 
magnetic will be zero. 1-Hcl is called COERCIVE MAGNETIC INTENSITY (one says wrong­
ly "COERCIVE FORCE"). After coming to -Hmax and returning again to Hmax' we shall 
describe the closed loop in fig. 3 which is called the HYSTERESIS LOOP. 

Let rre note that there is "hysteresis" also at the polarization of dielectrics. 
Magnetics with 1 a rge residua 1 magnetic induction are ca 11 ed PERMANENT MAGNETS ( shor­
tly MAGNETS) and dielectrics with large residual electric displacerrent are called 
ELECTRETS. 

In fig. 3 there are shown different kinds of pe rrreabil i ti es defined by the re la­
ti on 

ll = arctan(B/H), (20.9) 

noting that in the figure the "arctan" is designated by "tan- 111• 

It can be shown that the area of the hysteresis loop in fig. 3 is equal to the 
energy which is lost in the form of heat for magnetizing, demagnatizing, anti-magne­
tizing, demagnetizing and again magnetizing of unity volurre of the magnetic. This 
energy is called HYSTERESIS LOSSES. The effect is no more a pure electromagnetic ef­
fect as heat becorres involyed. 

Let consider now a closed magnetic with length Land cross-section S, whose perrre­
ability is \J. If a coil with N turns is wound on it in which current I flows, this 
is called a TORUS. The most simple torus is the circular one, with radius Rand ra­
dius of the turns r = /sTrr. For R » r the magnetic intensity in the torus is as in 
a very long solenoid (see (18.28)) H = 41rNI/cL and the magnetic induction is ·a= 
41rµnI/c, where n = N/L is the nunt,er of the windings on a unit of length. If not the 
whole length of the torus is covered by the N turns but only a certain part t.L of it 

andµ is high enough, the magnetic induction in the iron will be B = 41rµnl/c, where 
now n = N/t.L. The iron on which the coil is wound is called CORE, and the iron which 
"conducts" the magnetic flux and closes it is cal led YOKE. 

I introduce the notion MAGNETIC TENSION (official physics calls it "MAGNETOMOVING 
FORCE"), Um, as folows 

Um= (41r/c)NI = (41r/c)nIL = HL = (8/µ)L. (20.10) 

Ifµ does not remain constant in the whole torus, we shall have 

U = ~(8/µ)dL = ~(~/µS)dL = ~~dL/µS = ~Rm 
m L L L 

(20.11) 

This equation has a form similar to that of Ohm's law (16.5). Here the magnetic 
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tension Um stays for the electric tension U, the magnetic flux _ii> stays for the elec­

tric current I and the "magnetic resistance" Rm' called RELUCTANCE, stays for the 

electric resistance R. The analogy between Ohm's law in electricity (16.5) and 

"Ohm's law in magnetism" (20.11) is purely formal and has no certain physical back­

ground. 

The quantity reciprocal to Rm 

(20.12) 

is called PERMEANCE. Thus permeabilityµ corresponds to the conductivity y (see 

( 16. 3)). 

Let have a slot of sma 11 length l in the iron ring, and let us assume that the 

magnetic flux remains constant along the whole length of the torus, i.e., let us as­

sume that there is no dispersion of magnetic flux in the slot. 

Now we shall have for the reluctance, according to the last part of equation 

(20.11), 

Rm= (L - l )/µS + 1/S = {L + l(µ-1)}/µS = (L + µ1)/µS. (20.13). 

Thus an air slot of length l increases the reluctance as an additional iron part 

of length L' = µl. 

21. THE DIFFERENT KINDS OF ELECTRIC INTENSITY 

According to the concepts of official physics, which I shall call the first con­

cepts, the EFFECTS on charges at rest are called ELECTRIC and the effects on charges 

in motion are called MAGNETIC. I also foTiowed these concepts when separating the 

terms in the Newton-Lorentz equation (8.5) into two electric terms, presented under 

the conmon name "restricted electric intensity", and into two magnetic terms, the 

vector magnetic intensity and the scalar magneti:c intensity (official physics, of 

course, ignores the latter). 

However the separation of the effects into electric and magnetic can be done fol­

lowing other second concepts, namely, considering as electric the effects due to the 

action of_ charges at rest and as magnetic those due to the action of. charges in mo­

tion. Now only the first term in the Newton-Lorentz equation (8.5) will be called 

electric and the ottier three terms magnetic, although the fourth term, in view of 

equation (8.8) can be considered as electric and as magnetic, noting, however, that 

to have a,i,;at I- 0, the charges must move. 

Both these separations of the effects in electromagnetism into electric and mag­

netic have their positive and negative aspects and the best way is to consider all 

effects as common ELECTROMAGNETIC EFFECTS. In these third concepts, however, it is .. 
convenient to give to the notion "electric" the pedominance and to try t6' evade as 

much as possible the notion "magnetic". 

Following these third concepts, I called the net force acting on a .test charge 

"global electric intensity". I give to the different parts of this force 
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Ecoul = - grad$, Etr = - aA/cat, Emot = .(v/c)xrotA, Ewhit = - (v/c)divA (21.1) 

the names: COULOMB ELECTRIC INTENSITY, TRANSFORMER ELECTRIC INTENSITY, MOTIONAL ELEC­

TRIC INTENSITY and WHITTAKER ELECTRIC INTENSITY. 

The transformer electric intensity can have two substantially different aspects: 

a) REST-TRANSFORMER ELECTRIC INTENSITY (in case where the wires of the surroun­

ding system are at rest and only the flowing currents change) 

Erest-tr = - (1/c)aA/at. (21.2) 

b) MOTIONAL-TRANSFORMER ELECTRIC INTENSITY (in case where the currents flowing 

in the wires of the surrounding system are constant but the wires move, and the mag­

netic potential becomes a composite function of time through the radius vectors ri 

connecting the different current elements with the reference point) 

1 n aA; {ri (t)} 1 n aA; ax; aA; ayi aAi az; 1 n 
E =--}:---=--}: (--+--+.-.-=-}: (v .. grad)A. 
mot-tr ci=l at ci=l ax at ay at az at c i=l , , 

(21. 3) 

where vi = - ar/at is the velocity of the i-th current element of the surrounding 

system which generates the magnetic potential Ai at the reference point. The time 

derivative of the radius vector ri is taken with a negative sign, as ri points from 

the i-th current element to the reference point. If the surrounding system, i.e., 

the magnet, moves translatory, we shall have vi = v and thus 

Emot-tr = (1/c)(v.grad)A. (21.4) 

The motional-transformer electric intensity and the formula describing it were 

discovered by me(6 l, although every child must come to this "discovery" following 

the elementary ~thematical logfc. I repeaton<?e more (see Sect. 14) that in electro­

magnetism there are only three discoveries: the law of Couloni:>, Neumann and Newton 

(i.e., Newton's law for gravitational energy of two masses leading to the world 

gravitational energy of mass m, Uw• which when taken with negative sing gives the 

time energy of m, e
0

). All other electromagnetic "effects" are simple logical conclu­

sions to which these three laws lead, after introducing the most simple models for 

conductors, dielectrics and magnetics. 

Why then official physics does not know the motional-transformer electric inten­

sity? The answer is: Because of the introduction in physics of the wrong PRINCIPLE_ 

OF_ RELATIVITY. Indeed, according to this principle, all physical effects must depend_ 

only on the relative velocities of the bodies. Thus, this principle asserts that if 

at a motion of a wire with velocity v respectively to a magnet at rest the induced 

in the wire electric intensity is given by the third formula (21.1), then the elec­

tric intensity induced in the wire at rest when the magnet moves with a velocity v 
wi 11 be 

£relativistic= - £mot= - (l/c)vxrotA. (21.5) 

· How many papers and books have been written to show that the stupidity (21.5) 
must be true! 
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Let ne present here the experienrit of Kennari 14) which in rey si lTI) li fied vari a­
ti on (fig. 4) was labeled by J. Maddox(lS) as "Stefan Marinov's puzzle". As a matter 
of fact, there is no puzzle at all, as Kennard's experinent is a trivial illustra­
tion of the difference between the motional and motional-transforner electric inten­
sities and the "puzzle" is only in the heads of the poor relativists. 

I shall present first the description of the puzzle by John Maddox' own words:( lS) 

... from tine to tine, in Marinov's copious writings, there are relatively 
sirole argunents that appear accessible even to those still at high school. 
Here is one series of gedanRen experiments presented as if it were a Christmas 
puzzle (the original intension), with sone helpful (or misleading) hints for 
its solution. 

The figure (fig. 4) shows a pair of circular conductors arranged as two con­
centric circles. Equal electric currents are circulated in each, but in oppo­
site directions. The simplest way of creating this arrangement is to cut 
through the concentric pair at some point and to join the loose ends in pairs 
by short engths of straight conductor. An electromotive force applied anywhere 
a long the conductor will engender a current whj ch must be everywhere uniform. 
At the bridged gap, there· wi 11 be equal currents flowing in oppqs ite di rec-
t ions, so their influence on the magnetic fields in the concentric 9ap will be 
zero. 

The device is thus a neans of arranging that there is a uniform magnetic 
field in the space between the concentric circles in a direction perpendicular 
to their plane (downwards into the plane of the paper when the current in the 
circuit flows in the direction indicated). The sensor in the experinent is a 
conductor long enough just to bridge the gap between the concentric circles 
and mounted on thin insulating support in such a way that it can be made to 
slide around the circle. The objective is to neasure the voltage across the 
sliding conductor, either by a standard voltmeter or by a condenser whose ac­
cumulated charge will be a measure of the voltage in a steady state. 

R 

Fig. 4. Kennard's expe_riment. 
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The simplest case is when the sliding conductor is at rest. Then there is 
no voltage. Right? Next comes the case in which the sliding conductor moves at 
uniform speed around the concentric gap, always pointing along a radius of the 
concentric circles. As the slider moves, it will cut through magnetic lines 
of force at constant rate, so that there will be a constant voltage across the 
_ends. The polarity of the slider will depend only on the direction of the 
current in the concentric circuit, and not on ·whether the slider moves clock­
wise or anticlockwise. Right again? 

Now come the tricky part, at least so far as Marinov is concerned. What 
happens if the sliding conductor is fixed in space, but the undrlying concen­
tric circuit is rotated about its center? Rel ati vi ty theory naturally predicts 
that the voltage across the sliding conductor would be the same as in the first 
experiment, and with the same polarity. On the other hand, questions may be 
raised about the degree to which the pattern of magnetjc forces generated by 
the current is dragged around the ring by its rotation. Maybe there is a smal­
ler voltage, but with the same polarity. What, asks Marinov, is the answer? 

The second conundrum is superficially simpler: simply rotate the apparatus 
in its own plane, about the center of the concentric circles. (There will be a 
small voltage due to Earth's magnetic field, but this may safely be neglected.) 
ls there n<M a voltage, and with what polarity? If the answer to the first 
question is "Yes" the answer to the second must be "No", and vice versa. Rea­
ders are invited to make up their minds before reading on. 

Marinov's own answers are unarrbiguous. Vice versa wins the day. When the 
underlying concentrc circle is rotated and the slider is kept fixed, there is 
no voltage across the movable conductor. But when the whole apparatus is rota­
ted about its centre, the voltage across the now-moving sliding conductor is 
identical with that obtained when the slider is moving relative to the concen­
tric circuit. 

The implications are evidently important. The null answer to Marinov's first 
question implies that relativity has vanished through the window, the affirma­
tive answer to the second implies that an isolated apparatus carrying a circu­
lating current will generate a voltage when rotated, which raises forbidden 
questions about absolute space. 

Here are 11\Y corments: 

Fi rs t about Maddox' language: 

1) For "electric tension" Maddox (and whole official physics) uses the word "vol­

tage". But if following such a trend, we have to call the current "amperage", the 

magnetic intensity "teslage", etc. 

2) For "driving tension" Maddox (and whole official physics) uses the very bad 

word "electromotive force". 

Then about Maddox' concepts: To speak at the end of the XXth century about "MAG­

NETIC FORCE LINES" and to ruminate (as Faraday did) whether these lines will move 

when a current wire produ.cing them moves is the same thing as at the end of XXth 

century to ride a horse on London's Strand. In electromagnetism there are only char­

ges, moving charges (i.e., current elements), distances and a watch on the physi­

cist's left hand. And nothing else! 

Finally about three Maddox' obvious errors, the first one being an essential er­

ror and the two other la.psw, c.al.a.mili: 

1) The tension along the slider can be measured only by the help of a condenser 

which accumulates the charges generated at its ends and by leading them to an elec­

trometer, as KENNARD did in his EXPERIMENT. (l 4 )_ In ll\Y quasi-Kennard experiment 

(see fig. 5 and Sect. 45) the availability of charges at the ends of the slider was 
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indicated electroiretrically directly by "golden leaves". By the help of a "standard 

voltrreter" the difference between the motional and IIDtional-transforirer induced elec­

tric tensions cannot be de!IDnstrated, as at the ends of the slider one must put sli­

ding contacts and at 1IDtion of the voltrreter with its wires leading to the sliding 

contacts a tension will be induced in these wires exactly equal and opposite to the 

tension induced in the slider when it IIDves with the sarre velocity. 

2) Maddox writes that the polarity on the slider will not depend on whether the 

slider moves clockwise or anti-clockwise. This is wrong. By changing the sense of 

the slider's rotation the polarity of the tension induced in the slider will also 

change. 

3) Maddox writes that the two concentric current wires generate a "uni form" mag­

netic field. This is not true. The magnetic field is not uniform. It is the stron­

gest near the concentric wires and the weakest along the middle circle between them. 

Now I shall calculate the effects in Maddox' "puz.zle" which is not at all a puz­

zle but, as already said, a trivial illustration of the third formula (21.1) and 

of formula (21.4). 

To be able to make these calculations, let us find first the magnetic potential 

generated by two currents I flowing in two infinitely long parallel wires separated 

by a distance b. In fig. 5 two such wires are presented assuming that their lengths, 

d, tend to infinity. If the frarre's origin is taken at the center of the rectangle, 

the ordinate of the upper wire will be b/2 and of the lower - b/2. The current in 

the rectangular loop in fig. 5 is flowing in positive, i.e., anti-clockwise direc­

tion, thus in a direction opposite to the current's direction in fig. 4. 

-d 

- - -

b b-b
0 

+ -

y 

X 

z 

Fig. 5. The quasi-Kennard experiment. 
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According to formula ( 18. 15) we sha 11 have for the x-component of A generated by 

the upper wire at a reference point taken on the y-axis 

d/2 2 2 1/2 
A = - (1/c) f {(b/2 -y) 2 +x2}-l/ 2dx = - (21/c}lnd/ 2 + {(b/ 2 -y) +d / 4 } , (21.6) 

X . -d/2 b/2 - y 

the components A and A being equal to zero. We see that ford ➔ 00 the component y z 
Ax tends to infinity. However the magnetic potential generated by the upper and low-

er currents in fig. 5 is final also for infinitely long wires, namely 

A = - ~ lnd/2 + {(b/2 -y)2 + ci2;4}1/2 + Q lnd/2 + {(b/2 +y)2 + d2/4}1/2 = 
x c b/2 - y c b/2 + y 

~ lnb/2 - Y, 
C b/2 + y 

(21.7) 

where the res ult on the right side is written for d 1 on~ enough and y can take any 

value except b/2 and - b/2. 

These two long d-wires can be connected with the short b-wires and so we shall 

obtain a rectangular loop with d » b. As the two b-wi res are far enough from the 

reference point, their contribution to the magnetic potential can be neglected. 

I shall calculate the effects for the rectangular long loop in fig. 5. If the ra­

dius R in fig .. 4 is large enough, i.e., if R » b, the same effects will be valid 

also for the concentric loops in fig. 4. 

The magnetic intensity for reference points along the y-axis will be if using 

formula (21. 7) 

and the electric intensity induced along the moving slider will be 

b A 

E = vxB/c = (vB /c)y = Svl Y 
mot z c2(b2 _ 4y2) 

(21. 8) 

(21.9) 

For the electric tension induced along the slider with length b -b
0 

we shall have 

b/2-b 0/2 2 I (b-b 0 }/2 
Umot = f (E tl dy = (4vl/c )Artanh(2y/b) = 

-b/2+bof2 mo y -(b-b
0

)/2 

(4vl/c 2 )(1/2)ln 1 + 2y/bl (b-bo)/
2 

= (4vI/c2}1n 2b -bo = (4vl/c 2 }ln(2b/b
0

), (21.10) 
1 -2y/b -(b-bo)/2 b0 

where the result on the left is for b » b0 • 

Meanwhile we shall have for the electric intensity induced in the slider at rest 

when the long rectangular loop in fig. 5 moves with velocity v 

Emot-tr = (v.grad}A/c = (v/c)aA/ax = O. (21.11) 

When moving both the slider and the rectangular loop in fig. 5 with a velocity v 

the electric intensity induced in the slider will be the sum of the motional (21.9) 
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and irotional-transformer (21.11) intensities, thus the tension induced will be gi­

ven by formula (21.10). That's the whole "puzzle" of Dr. Maddox and the relativity 

blind . 

. Let me note that the magnetic intensity produced by a very long wire at a dis-

tance r., according to formula ( 21.8), in which we put b/2 = r, y O, wi 11 be 

8single = (l/ 2 )8double = 2I/cr. ( 21. 12) 

The electric intensities (21.1) are the kinetic forces of the unit test charge. 

They can lead to the irotion of the test charge in the conductor, and in such a case 

we call them ELECTROMOTIVE FORCES or they can be transferred from the charge on the 

metal lattice (ions' lattice) setting the whole conductor in motion, and in such a 

case we call them PONDEROMOTIVE FORCES. All four electric intensities (21.1) can 

lead to electromotive forces but only Emot and Ewhit can lead to ponderomotive for­

ces. When vis the velocity of the test charge in the conductor, Emot and Ewhit ge­

nerate ponderoirotive forces, and when v is the velocity of the conductor, Eirot and 

'fwhit generate electromotive forces. If Ecoul and Etr have pushed the charges to 

the extremities of the conductor and for them there is no more motional freedom, 

Ecoul and Etr can also generate ponderomotive forces. 

The phenomenon of induction of electric intensity in conductors (~nd dielectrics) 

is called ELECTROMAGNETIC INDUCTION. The electromagnetic induction described by the 

third formula (21.1) is called MOTIONAL INDUCTION, by the fourth formula (21.1) 

WHITTAKER INDUCTION, by formula (21. 7) REST-TRANSFORMER INDUCTION and by formula 

(21.3) MOTIONAL-TRANSFORMER INDUCTION. The induction of electric intensity in con­

ductors (and dielectrics) according to the first formula (21.1) was called (see 

Sect. 20. 1) ELECTROSTATIC INDUCTION. 

Now I shall point out at the reason which has not allowed to humanity, during 

two centuries of experimental work, to reveal the difference between the motional 

and motional-transformer inductions. 

The reason is that for closed loops the induced motional and motional-transfor­

mer electric tensions are equal with opposite signs. Indeed, we have for the ten­

sions induced in a closed loop for the case where loop and magnet will be iroved 

with a velocity v together in the laboratory 
(21.13) 

c(Umot +Umot-tr) = ~(vxrotA).dr + c!{(v.grad)A}.dr = frot{vxrotA + (v.grad)A}.dS = O, 
L l s 

where S is an arbitrary surface spanned over the loop L, and taking into account for­

~ula (7.10) and the mathematical rule that rot(grad) of any scalar function is equal 

to zero, we ·conclude that the surface integral is identically equal to zElro. Thus 

we obtain 
umot = - u~ot-tr" (21.14) 

Proceeding from this equation which is not generally valid but only for closed 

loops Einstein created the monster called "theory of relativity" (see his 1905-
paper). 
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22. THE POTENTIALS, NOT THE INTENSITIES, DETERMINE THE ELECTROMAGNETIC EFFECTS 

The childishly simple theory obtained when proceeding from the axiomatic Coulomb, 

Neumann and Newton laws asserts that the electromagnetic effects are determined by 

the electric and magnetic potentials. Official physics asserts that the electromag­

netic effects are determined by the electric and magnetic intensities (of course ig-

noring the scalar magnetic intensity). 

The intensities are space and time derivatives of the potentials and, of course, 

they will also determine the electromagnetic effects. But as any derivative carries 

less information than the function itself, so the intensities may not be able to ex­

plain all effects which are described in all details by the potentials. 

In ny theory, if a material system is given, then the electric and magnetic po­

tentials are uniquely defined by the help of the definition equalities (8.1). Thus 

the potentials <I> and A are the primordial quantities which determine the motion of 

the test charge. According to official physics, the primordial quantities which de­

termine the motion of the test charge are the restricted electric intensity E and 

the vector magnetic intensity B. Thus for official physics any two potentials <I>, A 

which, when put in the first two equations (8.6) give the right intensities E, B, 

have the whole right to be treated as potentials of the system in consideration. 

Let us have two potentials <I>, A which give the right intensities E, B. Let us 

take an arbitrary function f(r, t) = f( x,y ,z, t) of the radius vector of the reference 

point and of time and write two "new" potentials 

<1>' = <1> - af/at, A' =A+ gradf. (22. 1) 

If putting <I>' and A' in the first two equations (8.6), we shall obtain two new 

intensities 

E' - grad(<!> - af/at) - (a/cat)(A + gradf) = - grad<!> - aA/cat = E, 

B' rot(A + gradf) = rotA + rot( gradf) = rotA = B. (22.2) 

It turns thus out that the new intensities are identical with the old ones. And 

according to official phys·ics the new potentials have the same right to be conside­

red as potentials of the system in consideration. Official physics calls the trans­

formation (22. 1) GAUGE TRANSFORMATION and the function f(r,t) GAUGE TRANSFORMATION 

FUNCTION. 

So, according to official physics, one can take as a gauge transformation func­

tion the fol lowing one 

af/cat = <1>, (22.3) 

obtaining thus the new electric potential equal to zero in whole space. Taking into 

account also the equation of potential connection (8.8), we shall thus have 

<I> I : 0, divA' = 0. (22.4) 

Official physics considers thus as justified to erase the reality of the elec-
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tric and scalar magnetic fields. t-bnstruous! 

For R\Y theory (and for the Divinity) the gauge transformation (22.1) is inadmis­

sible and not the intensities but the potentials determine thoroughly the effects 

in _electromagnetism. 

Now I shall show with simple considerations how the gauge transformation (22. 1) 

may lead to contradictions with the physical reality. 

In Sect. 18 I have calculated A and B of a very long circular solenoid. Now I 

shall do this for a very long solenoid with rectangular cross-sectuon. 

As the exact calculation is pretty complicated (I have not seen such a calcula­

tion in the literature!), I shall present here a very simple approximate calcula­

tion which also leads to the right result. 

Formula (21.7) gives the magnetic potential generated by the rectangular loop 

shown in fig. 5 at the assumtion d » b. Let us now suppose that there are n such 

loops on a unit of length along the z-axis going from z = -co to z = co, As in such a 

case there will be ndz turns along the differential length dz, the resultant magne­

tic potential is to be calculated according to the following formula, if we shall 

suppose b » IYI, i.e.'· if we shall suppose that the reference point is near to the 

x-axis, 

A =Q/ln{(b/2-y)
2 

+ z\ 112ndz =.!/{ln(l-
x c_co (b/ 2 +y)2 + z2 c_.,, 

- ~/ 2bY dz= - 4niy arctan(2z/b)l co= - 41mly/c, 
c_co b2/4 + z2 c -co 

(22:s) 

where I neglected y2 with respect to b2/4 and then presented the logarithm as a 

power series neglecting the powers higher than the first. 

For the magnetic intensity we obtain 

B = rotA = - (aA/ay)z = (4irnl/c)z, i.e., i.e., Bz = 4,mI/c. (22.6) 

Thus the vector of the magnetic intensity in the rectangular very long solenoid 

will have the following Cartesian components 

Arect = (-4,rnly/c, 0, 0) = (- yBz, 0 , 0). (22.7) 

According to formula (18.26), we shall have for A and B in a circular very long 

solenoid 
Bz = 4,rnl/c. (22.8) 

Thus the magnetic intensities in two very long solenoids with circular and rec­

~angular cross-sections are equal. However the magnetic potentials are not. The mag­

netic potential in the long solenoid with prolongated rectangular cross-iiection is 

given by formula (22.7), while, taking into account that Cartesian components of 

the magnetic potential in the circular solenoid are Ax= - A¢sin¢ = - A¢y/p, 

Ay = A¢cos¢ = A¢x/p, we shall have 
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(22. 9) 

The transformation from the potential (22. 7) to the potential (22.9), or vice ver­

sa is, of course, a gauge transformation. Indeed, choosing the gauge transformation 

function in (22.1) in the form f(x,y,z,t) = B
2

xy/2, we obtain the potential (22.9) 

if proceeding from the potential (22. 7) 

( 22. 10) 

Thus, according to official physics, for magnetic potentials in two very long so­

lenoids with circular and rectangular cross-sections (with d >> b!} one can take 

both quantities (22. 7) and (22.9) and~ effects will be determined by the magne­

tic intensity B
2 

given in (22.6) and (22.8) which has the same value in both sole­

noids. 

To show that this is not true, let us put an electric charge q at the centers of 

both solenoids. If moving this charge with a velocity v-in both solenoids first 

along the x-axis and then along the y-axis, the acting force, of course, will be the 

same: 

a) motion of the charge along the x-axis 

f = qEmot = (q/c)vxxBz2 = - (qvB/c)y - (471qvnl/c
2 )9, (22 .11) 

b) motion of the charge along the y-axis 

.... A A 2 ,,_ 
f = qEmot = (q/c)vyxB

2
z = (qvB

2
/c)x = (47Tqvnl/c )x. (22.12) 

However if moving the solenoids with a velocity v, leaving the charge at rest, 

the acting force will be 

a) motion of the solenoid with circular cross-section along the x-axis 

( 22. 13) 

a') motion of the solenoid with rectangular cross-section along the x-axis 

f = (q/c)(vx.grad)(-yB x) = 0, 
z ( 22 .14) 

b) motion of the solenoid with circular cross-section along the y-axis 

f = (q/c)(v_y.grad)(-y8
2

x/2 + x_B.j/2) = - (qvB/2c)x = - (27!qvnI/c 2 )x, (22.15) 

b') motion of the solenoid with the rectangular cross-section along the y-axis 

f = (q/c)(vy.grad)(-y8
2
x) A 2 A 

(qvB/c)x = - (47TqvnI/c )x. (22. 16) 

Thus the motion of the test charge in these two solenoid, at motion of the sole­

noids, will be completely different, although the magnetic intensities in the sole­

noids remain the same. 

I should like to note that when calculating the integral (22.5) I integrated for 

z in the limits for - 00 to 00
, whi1e when calculating the integral (18.23) I integra~ 

ted for z in the limits from Oto 00
• Easily can be seen that if in (18.23) I had al­

so calculated in the limits from -oo to oo, a value for A two times. than He right 
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one should be obtained. I could not found an explanation for this disc·repancy, no­

ting that when B. B. Dasgupta (Am. J. Phys., 52,258, (1984)) calculates directly 

the magnetic intensity in a long circular solenoid he integrates for z in the li­

mit,s from - 00 to 00 and obtains the right result. Scott( 12l (p.322) makes the cal­

culation through the magnetic potenttal, exactly as I do; he takes z in the limits 

from - 00 to 00 but the result which he then writes is two ti mes s ma 11 er than this 

one which is to be obtained at a right mathematical calculation. I turn the atten­

tion of the mathematicians to this strange discrepancy. 

23. ABSOLUTE AND RELATIVE NEWTON-LORENTZ EQUATIONS 

The Newton-Lorentz equation (8.4) is written in a frame attached to absolute 

space and I call it the ABSOLUTE NEWTON-LORENTZ EQUATION. 

Let us now find the form of the Newton-Lorentz eq_uation in a laboratory (frame) 

moving with a velocity Vin absolute space, where it.will be called the RELATIVE 

NEWTON-LORENTZ EQUATION, begging once more the reader to pay attention to the di f­

ference between the Lorentz and Marinov invariances considered in Sect. 1. Thus I 

shall look for the Newton-Lorentz equation not forthe system considered first with 

mass center at rest in absolute space and then with its mass center moving with ve­

locity Vin absolute space but if the observer would move with velocity Vin abso­

lute space and the system considered remains always with mass center at rest in ab­

solute space. 

Let the velocities of the test charge and of the charges of the system in consi­

deration by v and vi with respect to absolute space and v', vi with respect to the 

laboratory which moves with the velocity Vin absolute space. 

As the velocity of the moving laboratory can be not high (the velocity of a la­

boratory attached to the Earth is about 300 km/sec!), it is enough to use the Gali­

lean formulas for the addition of velocites 

v=v'+V, (23.1) 

which can be obtained when differentiating formula (3.1) with respect to time (of 

course written in three dimensions), and not the Marinov formulas for addition of 

velocities which can be obtained ( 3 ,5 ) at the differentiation of formula (3.5). 

Let me note that in ·Ref. 5 I consider the effects which can be observed if the 

mass center of the system in consideration (usually a single particle) is conside­

red first at rest in absolute space and then moving with a velocity v in absolute 

space. In this case the velocity v can be high (even approaching c) and the Marinov 

or the Lorentz transformation formulas are to be used (I repeat - see Seat. 3 - when 

considered from an absolute point of view t~ese two transformations lead to identi­

cal results). 

Thus using (23.1), we shall have for the argument of the gradient in formula 

(8. 3), having in mind the definition formulas for the potent1'ills. (8.1), 
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<P _ v.A = 1~ _ v' +Vli(v{ +V) = 4>'(l _ v'.V _ _t) _ v'c+v_A', 
c ri c c r i c2 c2 

(23.2) 

where 4>' = 4> is the relative electric potential which is equal to the absolute elec­

tric potential, as the electric potential is not velocity dependent, A'= lqiv{/cri 

is the relative magnetic potential, and the summations are taken over then charges 

of the system in consideration. 

The total time derivatives of the absolute and relative magnetic potentials must 

be equa 1 

dA/dt i: dA'/dt, (23. 3) 

because dA/dt depends only on the J:hanges (for a time dt) of the absolute velocities 

of the charges and dAYdt depends on changes of their relative velocities and these 

changes a_re equal, and on the changes of the di stances between qi and q which are 

equal, too. 

Putting (23.2) and (23.3) into (8.3), we shall have, remenbering the deduction 

of formula (7.11), 

~ m(v + V) 
dt {1 _ (v +v)2;c2}1/2 

q(grad4> + .! ilA) + .9. vxrotA - .9. vdivA + 
C tlt C C 

qv2v grad4> + qV: grad4> + i VxrotA + i (V.grad)A, 
C C 

(23.4) 

where all laboratory quantities in (23.4) and further in this section are written 

without primes. 

Comparing formulas (23.~) and (8.4), we see that their"potential" (right) parts 

differ with the last four terms in equation (23.4). The electric absolute effects 

are proportional to V/c and can be neglected with respect to the .relative (labora­

tory) electric effects, however the magnetic absolute effects are not only compara­

ble with the relative magnetic effects but, at V > v, are even bigger. 

To delOOnstrate the vali_dity and effectivity of the relative Newton-Lorentz equa­

tion (23.4), let us consider again the rectangular current loop in fig. 5. Let us 

suppose that the loop IOOves with a velocity Vin absolute space and let us attach 
to it the roving frame K'. 

The test charge (the vertical wire in fig. 5) is first at rest in the laboratory, 

i.e., at rest with respect to the loop, and then it is IOOVed with the laboratory ve­

locity v. The electric intensity induced in the wire as a result of this motion, 

which can be observed by the help of a voltmeter that is all the time at rest in the 

laboratory, can be calculated from the following two equations 

cE = VxrotA + (V.grad)A, cE' = vxrotA + VxrotA + (V.grad)A, (23.5) 

and for the difference E' - E we obtain 

E' - E = Erot (v/c)xrotA. (23.6) 



- 81 -

Let us now suppose that the test charge (the vertical wire in fig. 5) is always 

at rest in the laboratory and the loop originating the mag_netic potential first is 

at rest in the laboratory and then is moved with velocity v. The electric intensity 

induced in the wire as a result of this motion cannot be observed by the help of a 

voltmeter but only by observing the change of the charges at the extremities of the 

vertical wire in fig. 5 and can be calculated as follows: The initial induced elec­

tric intensity E will be the same as in (23.5). When the loop is set in motion with 

velocity v, we have to write the relative Newton-Lorentz equation in a frame K" mo­

ving with a velocity V +v in absolute space, as only in this frame the originated 

laboratory magnetic potential will be as at the initial moment. As in this frame 

the test charge will have a velocity - v, we obtain 

cE" = - vxrotA + (v +V)xrotA + (v +V). grad A, 

and for the difference E" - E we obtain 

E" - E = Emot-tr = (v.grad)A/c. 

(23. 7) 

(23. 8) 

That's the whole "secret" of the space-time absoluteness which neither Lorentz 

and Poincare nor Einstein and tu.tt.i. qu.a.ntl could grasp. A problem to be solved by 

chi 1 dren ! 

If the loop and the test charge (the vertical wire in fig. 5) are first at rest 

in the laboratory and then move together with velocity v, instead of equation (23. 7), 

we have to write 

cE"' = (v + V)xrotA + {(v + V).grad}A, 

and for the difference E"' - E we obtain 

(23.9) 

E"' - E = Emot + Emot-tr = vxrotA/c + (v. grad)A/c. (23.10) 

The different effects described by formulas {23.6), (23.8) and (23.10) were ob­

served first by Faraday on his famous disk(lG) with closed loops by using sliding 

contacts and by Kennard( 14) with open loops. By transforming Kennard 's rota ti anal 

experiment to an inertial experiment,-called by me the quasi-Kennard experiment, I 

succeeded (see Sect. 45) to measure the Earth's absolute velocity by using the 

first formula (23.5). 

24. WHITTAKER'S AND NICOLAEV'S FORMULAS 

24.1. WHITTAKER'S FORMULA. 

Let us consider the Newton-Lorentz equation (8.4) and assume grad~= O, aA/at = O 

and that the magnetic potential A is generated by a single current element I'dr' 

A = I 'dr'/tr. () (24.1) 

Puttung all this in (8.4) and presenting qv as a current element Idr, we shall 

obtain for the kinetic force of the current element ldr (or for the potential force 

with which the current element I'dr' acts on _the current element Idr) the following 
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expression, where r poTits from dr' to dr, 

df = (II'/c 2 ){drxrot(dr'/r) - drdiv(dr'/r)} = (II'/c 2 r 3){drx(dr'xr)+ dr(dr'.r)} = 

(II'/c 2 r 3){(r.dr)dr' - {dr.dr')r + (r.dr')dr}. (24.2) 

call (24.2) the WHITTAKER FORMULA, as allegedly Whittaker(l?) was the first 

one who has written it on a piece of paper without presenting some motivations. I 

write Whittaker's formula also in another form in which the places of the different 

term are exchanged 

df = (II'/c 2r 3{(r.dr')dr + (r.dr)dr' - (dr.dr')r}. (24. 3) 

The GRASSMANN FORMULA{l8), which can be obtained exactly in the same way from the 

LORENTZ EQUATION, what is equation.(8.4) without the last term, is (24.2) without 

the last term, i.e., 

df = (II 1 /c2r 3){(r.dr)dr' - (dr.dr')r}. (24.4) 

The AMPERE FORMULA( 19) has the form 

df = (II'/c 2 r5 ){3(r.dr)(r.dr') - 2{dr.dr')r 2}r. (24.5) 

Ampere's formula (24.5) shows that the potential forces with which two current 

elements act one on anot_her are equal, oppositely directed, and lie on the _line joi­

ning the two elements. Thus Ampere's formula preserves Newton's third law (at the 

deduction of his formula Ampere assumed that Newton's third law must be valid at 

the interaction of two current elements). 

Whittaker's formula (24.3) shows that the potential forces with which two current 

elements act one on another are equal, oppositely directed, but may not lie on the 

line joining the elements. Thus Whittaker's formula violates Newton's third law. 

Grassmann's formula (24.4) shows that the potential forces with which two cur­

rent elements act one on another may be neither equal nor oppositely directed. This 

formula drastically violates Newton's third law and all professors in the world are 

caught by a panic fear when they have to teach it to the students. For this reason, 

although being the fundame·ntal formula in official magnetism, it can be seen in on­

ly one of ten textbooks. 

For the force with which a closed current loop L' acts on another closed current 

loop Lall three formulas lead to the same result 

f = - (II 1 /c2)fJ {dr.dr'/r 3)r, (24.6) 
LL' 

which preserves Newton's third law. The integration of formula (24.3) can easily be 

carried out as r.dr/r 3 
= - d(l/r) and r.dr'/r 3 

= d(l/r) are total differentials and 

at the integratiin along the closed loops Land L', respectively, give zeros. 

On the same grounds one sees that Grassmann 's formula also leads to formula (24.6). 

The conclusion that Ampere's formula als.o leads to formula (24.6) is based on a 

theorem demonstrated by Lyness( 20) that the force with which a closed current loop 

acts on a current element is the same according to Ampere's and Grassmann 's formulas. 
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Let me efll)hasize that according to formula (24.6) the forces with which two cur­

rent loops act one on another are equal and oppositely directed. Thus for an isola­

ted system consisting of two current loops the momentum conservation law will be 

conserved. However formula ( 24. 6) does not say whether the torques with which two 

current looP5 act one on another will be equal and oppositely directed, thus it 

does .not say whether for an isolated system consisting of two current loops also 

the angular momentum conservation law wi 11 be conserved. 

I could not prove this second theorem and to the best of l11Y knowledge there is 

no such a theorem in the literature (of course when proceeding from Grassmann 's for­

mula, as Whittaker's formu1'.a is practically unknown). 

This aspect for the interaction of the closed current loops remains for me open. 

As the reader will see in Sects. 50 and 56, I tried to construct machines which 

had to vfolate the angular momentum conservation law at the interaction of clos·ed 

loops but without success and ll1Y intuition says tha\ at the interaction of closed 

loops the angular momentum conservation law cannot be violated. 

As shown in Sect. 63, I succeeded to violate the angular momentum conservation 

law only by constructing a machine with non-closed current loops. 

Both Grassmann's and Afll)ere's formulas are wrong (see Sect. 26, 57,_ 58, 63) and 

Whittaker's formula is to be consdiered as the right one. I shall show, however, in 

Sect. 24.2 that certain theoretical considerations require. the introduction of a 

certain change in Whittaker's formula which thus obtains a slightly different mathema­

tical form, called by me the NICOLAEV FORMULA. It is Nicolaev's formula which is· 

confirmed by the experiments (see Sects. 57 -60). 

For the force with which a cl,osed current loop L' acts on a current element I dr 

of the loop L we obtain from (24.3), taking again into account that r.dr'/r 3 d(l/r) 
is a total differential, 

l:!.f = (II 1/c2)/ drxrot(dr'/r) = (Idr/c)x/ rot(I'dr'/cr) = (Idr/c)xB. (24.7) 
L' LI 

Thus the Whittaker scalar magnetic iritensity produced by a closed current loop is 

~- For this reason during two centuries of experimental work humanity could not 

reveal the existence of the scalar magnetic field. 

However, as it will be shown in Sect. 24.2, the Nicolaev scalar magnetic inten­

sity produced by a closed current loop may not be zero and one has to wonder that 

after two centuries of experimental work Nicolaev was, as a matter of fact, the 

first one who has observed it in childishly simple experiments. 

Before presenting Nicolaev's formula, let me show that if the current elements 

Idr and I'dr' are coplanar, then their Whittaker forces of interaction d~pend only 

on the distance between the elements but not on the angles defining their mutual 

positions. Indeed; according to formula (24.3), omitting the factor (II 1;c2r 2 ) and 

denoting by n = r/r the unit vector pointing from dr' to dr, we shall have for the 

square of the magnitude of the force df with which I'dr' acts on Idr, taking into 
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taking into account that the angle between n and drxdr' is equal to n/2. 

(df) 2 = {(n.dr')dr + (n.dr)dr' - (dr.dr')n} 2 = {(n.dr')dr - (n.dr)dr 1 l + (dr.dr'J2 = 

{nx(drxdr 1
)}

2 + (dr.dr 1)2 
= dr2dr 12sin2a + dr2dr 12cos2a = dr2dr 12, (24.8) 

where a is the angle between dr and dr'. 

24.2. NICOLAEV'S FORMULA. 

Let us consider two parallel current elements Idr and I'dr' lying on the y-axis 

and pointing in parallel to the x-axis whose radius vectors are, respectively,O and 

yy, where r = - yy is the vector distance pointing from the current elenent dr' to 

the current element dr. The force with which I' dr' acts on Idr, according to Whitta­

ker's formula (24. 3),will be 

df = - (II '/c 2r 3}drdr'r = (II 'drdr'/c 2y2)y (24.9) 

and will point towards dr', thus Idr will be attracted by I' dr'. The current ele­

ment Idr will act on the current element I'dr' with the same and oppositely direc­

ted attractive force. 

At the mutual attraction of Idr and I'dr·•, their magnetic energy, which is a ne­

gative quantity, will decrease (its absolute value will increase) and the ·1oss of 

magnetic energy will be equal to the gain of mechanical energy, as the kinetic ener­

gies of the elements will increase. 

Let us now suppose that the same current elenents lie on the x-axis pointing 

again along the x-axis and their radius vecto·rs are, respectively, 0 and xlr, where 

r = - xx is the vector distance pointing from dr' to dr. The force with which I'dr' 

acts on Idr, according to Whittaker's formula (24.3), will be 

df = (II'/c 2r3}drdr'r = - (II'drdr'/c 2x2)x (24.10) 

and will point towards dr, thus Idr will be repulsed by I 'dr'. The current element 

Idr will act on the current element I'dr' with the same and oppositely directed re~ 

pulsive force. 

At the mutual repulsion of Idr and I'dr', their magnetic energy, which is a ne­

gative quantity, will increase (its absolute value will decrease) , but, on the 

other hand, also the kinetic energies of the two current elements, due to their re­

pulsive forces, will increase. This is a patent violation of the energy conserva­

tion law. Thus something is wrong with Whittaker's formula. 

There is also another delicate point. We cannot irragine how current elements may 

JOOVe along the current wire. If we have an elastic wire which we can extand mecha:.. 

nically, there will be JOOtion of the line elements, but from an electromagnetic 

point of view, at such an extension, the electromagnetic system remains exactly the 

same and there is no motion of the current elements. 

Proceeding from these speculations, I decided to write Whittaker's term in Whit­

taker's formula, i.e., the last term in formula (24.2) or the first term in formula 
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in the following form 

( r. cir' )( 1 - ( dr. dr' ) 2) dr = 
dr 2dr' 2 

(24.11) 

and I assumed a,d hoc. that the right formula describing the interaction between two 

current elements is not Whittaker's formula (24.3) but the following one 

df = (II'/c 2r 3){(r.dr'}(drxdr'} 2dr/dr 2dr' 2 + (r.dr}dr' - (dr.dr')r}. (24.12) 

Now the Newton-Lorentz equation is to be written not in the form (8.5) but in the 

fol lowing form 

Eglob = - grad<!> - aA/cat + (v/c)xrotA - (v/c}{div/dA(vxdA/;v2di}, (24.13) 

where the integral is to be taken over all charges (current elements) any of whom 

generates the elementary magnetic potential dA. 

And the scalar magnetic intensity will be present~d not. in the form (8.6) but in 

the folowing form 

(24.14) 

i.e., Swill depend not only on the electric charges (and their velocities) of the 

surrounding system and on their distances to the test charge, but also on the direc­

tion of mtion of the test charge. Thus the scalar magnetic intensity of a given 

system acting on two test charges with different directions of IIXl.tion are not equal. 

I call formula (24.12) NICOLAEV'S FORMULA and equation (24. 13} the NEWTON-LORENTZ 

EQUATION IN ITS NICOLAEV'S FORM. Equation (8.5) will be then called the NEWTON-LO­

RENTZ EQUATION IN ITS WHITTAKER'S FORM. And now the Whittaker electric intensity 

(21.1) is to be substituted by the NICOLAEV ELECTRIC INTENSITY 

Eni c = - (v/c }div/ dA(vxdA>2; v2di, ( 24. 15) 

where the integral is taken over the surrounding system, every current element of 

which generates the elementary magnetic potential dA. 

Here I have to note that the equation of potential connection (8.8) preserves 

its validity, but we can no more replace Nicolaev's equation (24.13) by equation 

(8.9), so that the calculation of the global electric intensity is to be done pro­

ceeding only from Nicolaev's equation (24.13). 

The reader has seen in Sect. 7 that the introduction of the Whittaker's term in 

equation (7.9), i.e., the middle term on the right side of equation (7.9); was not 

sufficiently lawful from a rigorous mathematical point of view. And now I make ano­

ther colJl)letely a,d hoc. deformation of this formula. Thus the conclusion is to be 

done that the Divinity, when constructing the theoretical basis of elec~.\"Clmagnetism, 

proceeding .from the axiomatical Coulonti, Neumann and Newton laws, and when seeing 

that the theory leads to some unpleasant contradictions, trampling with both feet 

on the rigorous mathematical logic, introduced some "hocus pocus" tricks which no 

earthly scientist would al low himself to do. 



- 86 -

What can I do, dear reader? You see, the Divinity is not perfect: VZJUVte cuv-<.nwn 
v...t. And I am only his prophet. 

To a certain degree I can accept the introduction of the second term on the right 

side o.f equation (7.9) as a correct mathematical path (my friend Prof. U. Bartocci 

insists that the introduction of this term is inadmissible from a rigorous mathema­

tical point of view). Indeed "physical mathematics" permits certain "frivolities" 

but the introduction of "Nicolaev's correction" in the Whittaker's term is a com­

plete mathematical fiasco. If Nicolaev's formula is the right one and the Divinity 

was perfect, He had to arrive at this formula by logical mathematical steps. 

When one introduces similar logical acrobatics in the edifice of electromagne­

tism, one cannot ITKlre be sure whether the fundamental axioms wi 11 preserve their 

absolute validity. And if on our Earth there are clever children recognizing the 

Mephistophelian mathematical manipulations of the Divinity, they will be able to 

construct machines violating the most divine of all divine laws - the law of energy 

conservation (see Sect. 60). 

I must, of course, declare that I am not sure whether formula (24.12) introduced 

by me is the right one. The way to establish whether it is the right one is the fol­

lowing: The effects predicted by Nicolaev's formula for all known fundamental expe­

riments a re to be cal cu lated on a computer. If always the formula wi 11 give the 

right prediction, it is to be accepted as right until the day when somebody will 

show that the right formula is another one. 

I called formula (24.12) Nicolaev's formula, as the Russian physicist of Tomsk 

Genadi Nicolaev, whom I met at the space-time conference in Saint Petersburg in 

1991, has done many experiments (see Sect. 58) showing that a formula of such a 

kind must be the right one. 

It is possible, of course, that the Divinity has· not changed ad hoc the Whitta­

ker term into the Nicolaev term. Maybe the Divinity writes the space-time energy of 

two electric charges ql' q2 moving with velocities v1, v2 not in the Neumann's form 

(2.14) but in the following form 
2 3 W = - (q 1q2v1.v 2/c r )(v 1xr)(v 2xr)/v 1v2 , (24.16) 

or in the form 

(24. 17) 

Now. perhaps, the Divinity will come to Nicolaev's formula on a rigorous mathe­

matical way. I leave to the mathematicians the honour to prove this hypothesis; but 

I must declare that the form (24.16) is complicated, unesthetic, and if the Divinity 

is a Divinity He would not choose such a ghastly expression in His axiomatics. 

In the next three sections I shall make calculations of the forces acting between the 

current wires in some simple but fundamental cirrcuits. As pretty many experiments 

have shown that Grassmann's and Ampere's formulas are wrong (see Chapter VI), the 

formulas which still remain competitive are the Whittaker and Nicolaev formulas. 



- 87 -

Thus the calculation of the forces of interaction between current wires will be done 

when proceeding from Whittaker's and Nicolaev's formulas. In certain fundamnetal 

cases only, in order to reveal the differences, calculations also according to 

Grassmann's and Ampere's formulas will be done. 

25. THE PROPULSIVE AMPERE BRIDGE (PAB) 

The calculation of the magnetic force with which a closed current loop acts on 

a current element or on another open or closed loop is a simple calculation problem. 

However when we have to calculate the magnetic force with which a current loop acts 

on some of its current elements or a part of a current loop acts on other its part, 

inconveniences may appear, as the integrals may contain singularities. In such ca­

ses we have to make use of certain calculation tricks to be able to evaluate the 

acting forces. 

As a first examp 1 e, I sha 11 cal cul ate the force with which the current in one 

half of a circle of radius Rand wire's radius r acts on the currenr in the other 

half. This force can be measured if at the points where the two half-circles make 

contact sliding contacts will be put. 

If we shall try to use Whittaker's formula (24.3) or Nicolaev's formula (24.12), 

taking as L' the one half of the circle ans as L the other half, we shall obtain 

an integral containing singularities, so that we must search for another way to 

solve the problem. 

According to formulas (18.20) .and (18.9), the magnetic energy of this circle 

when current I flows in it will be 

W = - 12"n2I2R3l 2;c/r. (25. 1) 

At an increase of the radius with dR, the magnetic energy wi 11 increase by dW 

and the magnitude of the force acting on an element dr
0 

of the circuit will be 

df = (dr/211R)(dW/dR)= 311dr
0

I2/2/2"c 2rrR". (25.2) 

This force is perpendicular to dr 0 and obviously directed outside of the circle. 

Thus if the circular wire is done of elastic material, it will expand delivering 

mechanical energy and decreasing its magnetic energy. 

To obtain the net force acting on one half of the circle, we have to write in 

(25.2) dr 0 = Rd<j, and to take the projection of the force acting on dr 0 along the 

central radius of the half circle. Taking then into account that in a half circle 

there are two fourth circles, we shal 1 have for the net force 

11/2 11/2 3 I2R . d"' 2 2 
f = 2 f dfsin<j, = 2 J 11 . s,n<j, "' = (311/l'lc )I /TVr,, 

o o · 2/2"c21rl< 
(25.3) 

Thus the force pushing any of the two half-circles is proportional to the square 

root of R/r. 

When the one half-circle is fixed tci the laboratory and the other has sliding 
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contacts and is free to move, we call it CIRCULAR PROPULSIVE AMPERE BRIDGE. Of 

course, when the half circle has JTOVed a little, the circuit is no more circular 

and the pushing force may change. 

In Jig. 6 the HALF-CIRCULAR PROPULSIVE AMPERE BRIDGE is shown. The half ci rel e 

is called SHOULDER of the bridge and the vertical wires are called ARMS of the 

bridge. With the notations given in fig. 6 I have calculatei 1 the force pushing 

the half circle upwards when there are sliding contacts at the tops of the arms by 

using Whittaker's formula (24.3). The obtained integral which, of course, has sin­

gularities is given in Ref. 21. I could not find a way to evaluate the force pushing 

the half-circular Ampere bridge but it surely must be near (if not equal) to the 

force (25. 3). 

The classical half circular PROPULSIVE AMPERE BRIDGE (PAB) experiment was done· 

by Ampere in 1823 and is presented in fig. 7. The difference between the bridges in 

figs. 6 and 7 is that in the former the bridge is in the plane of the arms, while 

in the latter it is perpendicular to the plane of the arms. The pushing force acting 

on these two bridges surely must be the same. 

Ampere filled the troughs in fig. 7 with mercury, so that excellent sliding con­

tacts have been realized. Tait exchanged the copper bridge of Ampere by a glass tube 

filled with mercury to show that the effect is magnetic and not due to some surface 

forces at the contact mercury-copper. 

Instead of the half-circle in figs. 6 and 7 one can put a shoulder with a linear 

Fig. 6. Half-circular propulsive Ampere bridge. 
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Fig. 7. The classical propulsive Alll)ere bridge. 

form or with a II-form. 

The arms of the Ampere bridge can be done very long (theoretlcally one can assume 

them infinitely long) and the sliding contacts can be put at any two points at equal 

distances from the shoulder, so that the upper parts of the arms will be propulsive 

and lower stationary. 

According to Nicolaev's formula, as there are no forces between colinear currents, 

with the increase of the propulsive arms the pushing force in the half-circular Am­

pere bridge must diminish. As far as I know, measurenents for establishin-g the exis­

tence (or non-existence) of such an effect have not been done. 

On the other hand, the change in the magnetic energy of the whole circuit of the 

Alll)e re bridge does not depend on the fact at which points of the arms the s 1 i ding 

contacts are taken and thus, for a definite circuit, the pushing force cannot depend 

on the re 1 ation between the propulsive and stationary arms. Here one has to take al -

so into account that when increasing the length of the propulsive arms a pushing 

force acting on these propulsive arms appears generated by the current in the "oppo­

site" shoulder. 

26. ACTION OF RECTANGULAR CURRENT ON A PART OF IT 

26. 1. CALCULATION WITH WHITTAKER'S FORMULA. 

Now I shall calculate the longitudinal magnetic force acting on the current wire 

BC in the rectangular circuit ODEF in fig. 8. It was clained by Nicolaev( 2 l) that 

there is a longitudinal force acting on the wire BC and that he has observed it. Now 

I shall show that, according to Whittaker's formula the net longitudinal force acting 

on the current BC is null. 

The wire BC can slide at the contacts Band Sand has the length L. The action of 

the currents between·points _A and Band between points C and Don the current in the 
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wi re BC is entirely symlfetri c and opposite, so that the force acting on BC wi 11 be 

determined by the action of the currents in the wires OA,with length D, DE and FO, 

with lengths H, and EF, with length D +L +2a. 

First, for more simple calculation, I shall assulfe that D and Hare very long, 

so that the action of the currents EF and FO can be neglected. Whittaker's formula 

(24.3) gives for the x-component of the force (equal to the total force) with which 

the current OA acts on the current BC, by denoting dr = dx, dr' = dx', r = x+a +x', 

where x' = 0 at point A and x = 0 at point B (the last two assumptions lead to more 

sirrple limits in the integrals), 

C A L oo 

(foAl = (I 2tc 2 )f Jdrdr'/r 2 (I
2

tc
2

}Jdx Jdx'/(x' +a +x}2 
X B O o o 

2 2 L 
( I / C ) J dx/ ( X + a ) = 

0 

(26.1) 

For the x-corrponent of the force with which the current DE acts on the current BC 

we obtain, denoting dr = dx, dr' = dy, r = {(x+a) 2 + y2J 112 and taking x = 0 at 

point C c E L 

(fDElx = (I 2/c 2 )f f(r.dr')dr/r 3 = - (I
2
/c 2 )JdxJ ydy/{(x+a) 2 +l1312 

B D o o 
L 

- (I 2tc 2 )fdx/(x+a) = - (I 2tc2)ln(l + L/a). (26.2) 
0 

Con-paring formulas (26.1) and (26.2), we see that according to Whittaker's for­

mula there is no force acting on the wire BC .. 

Formulas (26. 1) and (26.2) show that, if x' = y, the current elelfents along the 

longitudinal wire OA which are near to point A act on the current elelfents along 

the wire BC with larger forces than the current elelfents along the transverse wire 

DE which are near to point D (put, for exanple, x' = y = 0). When the distances 

x' = y becolfe larger and larger the first forces diminish more rapidly than these­

cond forces, for certain x~ = y
0 

= b they becOIJ'e equal and then the first forces 

becolfe less than the second ones. By equalizing the elenEntary forces in (26. 1) and 

(26.2) and by putting there x~ = y
0 

= b, we obtain 

1/(b +a +x) 2 = b/{(x+a) 2 + b2J312 , (26.3) 

from where we can find b as a function of a and x. 

Let us now find the net longitudinal force acting on the current BC when the ac­

tion of the currents in EF and FO cannot be neglected. The integration will be more 

complicated but in the sanE lines as in the above two formulas; renErrbering that 

(26.4) 

we sha 11 have: 

The 

be 

x-component of the force with which the current OA acts on the current BC will 

L D 
(f

0
A)x = (I 2/c 2 }Jdx fdx'/(x' +a +x) 2 (I 2tc 2)1n(D+a)(L+a). (26.5) 

0 0 a(D+L+a) 
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The x-corrponent of the force with which the current DE acts on the current BC 

wi 11 be 
L H [ 2 2 1/21 

{f ) = {I2/c2)fdx fyqy/{{x+a)2 +y2}3/2 = {I2/c2)lna L +a +{H +(L+a) } :J (26.6) 
D_E X O O {L+a){a +(H2 +a2)1/2} 

The x-component of the force wi_th which the current FD acts on the current BC 

can be found directly from the result (26.6) taking it with negative sign and ex­

changing a for D+a 

{fFO)x = {I2/c2)ln(D+L+a)[o +a+ {H
2 

+(D+a)2} 112] 
(D+a)[D + L +a+ {H2 +{D+L+a)2}1/2] 

(26.7) 

The x-component of the force with which the current EF acts on _the current BC 

will be, if taking x' = Oat point F and dividing the integral on x' into two inte­

grals, as for x' < D+a+x the x-corrponent of the force is negative and for x•· > D+a+x 

positive, 

12 L D+a+x (D+ ')d, 12 L D+L+2a (, 0 )d, 
(f ) = - - Jdx f a+x-x x + - f dx f x - -a-x x 

EF x c2 o o {(D+a+x-x' )2 +H2}3/ 2 c2 o D+a+x {(x'-D-a-x) 2 +H2}3/ 2 

{I2/c2)ln {a + (H2 +a2)1/2}[D + L + a + {H2 + (D+L+a)2}1/2] (26.8) 
[D + a + {H

2 + {D+a)2}112][L + a + {H2 + {L+a)2}112J · 
The net longitudinal force acting on the wire BC will be the sum of the forces 

dr' E 
F 

,, 
dr' 

dr' 
H 

y 
' 

X J_ J_ I dr • ~-
I A - ..... - ~ 

B C D 
0 

-
D a· L a 

Fig. 8. Rectangular current loop acting on a part of it. 



- 92 -

( 26. 5) , ( 26 . 6 ) , ( 26. 7) and ( 26. 8) and it is eq ua 1 to zero 

(foAlx + {fDE)x + (frnlx + {fEF)x {I2/c2)lnl = o. (26.9) 

26.2 CALCULATION WITH NICOLAEV'S FORMULA. 

To obtain the pre di ct ion of Ni co 1 aev 's formula for the force with which the cur­

rent in the open loop DEFOA acts on the current in the straight wire BC, at the as­

surrption that the wires OA and DE are very long, we have to put in (26.1) (f 0A)x =0 

and the.force which will remain to act on the wire BC will be only the force 

(fDE)x given by formula (26.2). Thus the wire BC will move to the left, as Nicola­

ev first has observed (see Sect. 58.4). I repeated Nicolaev's experiment in a very 

irrpressive variation where a continuous rotation could be observed (see Sect. 59). 

26.3. CALCULATION WITH GRASSMANN'S FORMULA. 

As according to Grassmann 's formula (24.4) the force6 acting on a current ele­

ment must be always perpendicular to the latter. no longitudinal force can act on 

the current wire BC. 

26.4. CALCULATION WITH AMPERE'S FORMULA. 

Here also as above the force acting on BC will be determined by the action of 

the currents in the wires OA and DE. Arrpe re's formula ( 24. 5) gives for the x-corrpo­

nent of the force (equal to the total force) with which the current in OA acts on 

the current in BC, by denoting dr = dx, dr' = dx', r = x' + x, 
L oo 

(I 2;c 2)Jdx Jdx'/(x' +a+ xi2 
0 0 

(I 2 I c2 
) ln ( 1 + L/ a ) . 

L 
(I 2/c 2 ) dx/(x +a) 

0 

(26. 10) 

The forces with which the current elements along the wire DE act on the current 

elements along the wire BC are directed along the vector distance r. We have to con­

sider only the corrponents parallel to BC. The x-component of the force dfDE with 

which the current element I 'dr' along the wire DE acts on the current element Idr 

along the wire BC will be obtained by multiplying dfDE by -dr/dr, and denoting 

dr = dx, dr' = dy, r = {(x+a) 2 + y2}112 , so that for the net force we obtain 
2CE . I L 00 

(f ) = _.!.... f J3(r.dr)(r.dr) r.(-dr) = _ (I2/c2)J 3(x+a)2dx J -~y~dy~--
DE x c2 ~ D r5 dr o o {(x+a)2 + y2}5/2 

L . 
- (I 2;c 2 )Jdx/(x+a) = - (I 2;c2)ln(l + L/a). (26.11) 

0 

Corrparing formulas {26.10) and {26.11), we see that according to Arrpere's formula 

there is no force acting on the wire BC. 

Thus the only formula which predicts motion of the wire BC in the rectangular 

loop ODEF remains Nicolaev's formula. 
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27. INTERACTION BETWEEN CIRCULAR, RADIAL AND AXIAL CURRENTS 

It is highly ilJl)ortant to know the forces of interaction between a circular cur­

rent, on one side, and radial and axial currents, on the other side .. To the best of 

lT!Y ·knowledge, nobody has calculated these forces, even with the wrong Grassmann and 

AIJ1)ere formulas. 

Let us consider the most silJl)le circuit consisting of a circular current with ra­

dius Rand a rectangular current acde perpendicular to it with its corner at the 

center of the circular current (fig. 9). This case is presented also in fig. 10 

where two sliding contacts are put, so that one can observe the appearing forces, 

as done by Sigalov2 1 (I call the experiment shown in fig. 10 the FIRST SIGALOV'S 

EXPERIMENT). In the single circuit of fig. 10 the current is I, in the two circuits 

of fig. 9 the currents can be different, I and I'. 

I shall calculate the torques (moment of forces) _about the axis ac (the z-axis) 

appearing because of the action: 

1. of the internal radial current on the circular current, 

2. of the circular current on the internal radial current, 

3. of the external radial current on the circular current, 

4. of the circular current on the external radial current, 

5. of the axial current on the circular current. 

As in fig. 9 there are no colinear current elements, both Whittaker's and Nicola­

ev's formulas will lead to the same or to very similar results. I shall make all cal­

culations in this section according to Whittaker's formula. 

For brevity, in all formulas of this section the factor II'/c 2 will be omitted. 

C,---------------------. d 

dr' 

z 

b I' e X 

Fig. 9. Rectangular and circular circuits. 
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27. 1. ACTION OF THE INTERNAL RADIAL CURRENT ON THE CIRCULAR CURRENT. 

The unit vector along the x-axis is denoted by x, the unit vector along the polar 

radius is denoted by p, the unit vector which is perpendicular to the polar radius 

and corresponds to the polar angle 4> is denoted by$, and the unit vector along the 

z-axis is denoted by z. The circular and internal radial currents are shown in fig. 

11. 

The elementary 100ment of force about the z-axis appearing as a result of the ac­

tion of the radial current element dr' on the circular current element dr will be 

dM = Rpxdf, (27. 1) 

so that by substituting (24.3) into (27. 1) we obtain 

2" ,., " . dM = (R/r )px{coSljJ(-x) + COS\/1'4> - srnq,(r/r)}drdr'. (27 .2) 

As 

r/r = simjlp + cos~, dr = Rd¢, dr' = dx, pxx = - sinq,z, px$ = z, (27. 3) 

we obtain 
(27.4) 

We have from fig. 11 

sin\/!' = Rsin4>/r, (27 .5) 

so that by putting (27.5) into (27.4) we obtain for the component of the elementary 

torque about the z-axi s 

R2 (x - Reos¢) dxd¢ 

(x 2 - 2xRcos4> + R2)312· 
(27 .6) 

For x > Reos¢ the torque is positive and for x < Reos¢ negative (see fig. 11). 

To obtain the torque M acting on the whole circular current, we have to integrate 

formula (27.6) for x in the limits from Oto Rand for 4> in the limits from Oto 27T. 

s-----------------------,c 

E 

0 

Fig. 10. Si galov's first experiment. 
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Both integrations can easily be carried out in a final form, however at the point 

x = R, .p = O there is a singularity: the distance between dr and dr' becomes equal 

to zero. Thus we shall write the solution in the following form 

M }j~j R2(x - Rcos<j)}dx 
2j Rd<P + 

2
jRd<P Rlntan'Ji" + 2irR. (27.7) 

o o (x2 -2xRcos.p +R2) 3/ 2 o 2sin(<P/2) o tanO 

27.2. ACTION OF THE CIRCULAR CURRENT ON THE INTERNAL RADIAL CURRENT. 

To find the torque with which the circular current acts on the radial current, 

we change the directions of the currents. I and I' to the opposite. In such a case 

the acting forces remain the same, but we shall have now the angles tjJ and tjJ' less 

than ir/2 and this wi 11 facilitate the matemanti cs (fig. 12). 

The elementary torque about the z-axis appearing as a result of -the action of 

the circular current element dr' on the radial current element dr will be 

dM. = xxxdf, (27.8) 

so that by substituting (27.2) into (27.8) we obtain 

2 A A A • 

dM = (x/r )xx{costjJ(-<P) + costjJ'x - s1n<j)(r/r)}drdr'. (27 .9) 

As r/r 

obtain 

sintjJ'p - costjJ'$, dr = dx, dr' = Rd¢, xx$= cos¢z, xxp = sin¢z, we 

dM = (x/r 2 ){- COS<j)COStjJ + sin¢(sin<j)sintjJ' + COS<j)COStjJ' )z = 
(x/r 2 )(- COS<j)COStjJ + sin¢sintjJ)z, 

as <P - tjJ' = ir/2 - tjJ. 

x dr' 

(27. 10) 

I I 

Fig. 11. Action of intemal radial current on circular current. 
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Fig. 12. Action of circular current on internal radial current. 

We have from fig. 12 

coslj! = (x - Rcos<j,)/r, sinlj! = Rsinlj!/r, r 2 = R2 - 2xRcos,P + x2, (27.11) 

so that by putting (27.11) into (27.10) we obtain for the z-component of the torque 

dM = (xR/r 3)(cos.p(Rcos<j, - x) + Rsin2.p}dxd<j, = xR(R - xcos<j,) dxd,P 
(R2 - 2xRcos,P + x2)3/ 2 

(27.12) 

As R > xcos,p, the torque is directed along the z-axis and this leads to anti­

clockwise rotation. 

To obtain the torque acting on the whole internal radial current, we have to in­

tegrate formula (27.12) for x in the limits from O to Rand for ,p in the limits from 

0 to 21r. I could not evaluate the integral in elementary functions and perhaps this 

is not possible (the mathematicians have the last word). As the integral for x = R, 

<j, = 0, has singularity, I shall write it as a positive nunter B which is infinitely 

large 21r R 
M= fd,pf xR(R-xcos<j,) dxd,p =B. 

o o ( R2 - 2 xRcos,p + x2 ) 3/2 
(27.13) 

27.3. ACTION OF THE EXTERNAL RADIAL CURRENT ON THE CIRCULAR CURRENT. 

The elementary torque about the z-axis appearing as a result of the action of the 

external radial current element dr' on the circular current element dr will be given 

by formula (27.1), so that by substituting (24.3) into (27.1) we obtain (fig. 13) 
2 ,._ A A 

dM = (R/r )px{coslj!(-x) + costjJ'♦ - sin,P(r/r)}. (27.14) 

As r/r = sinlj!p + coslj!i, dr = Rd,P, dr' = dx, pxx = - sin,Pz, i>x$ = z, we obtain 
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I I 

Fig. 13. Action of extemal radi a 1 current on circular current. 

2 2 A 

dM = (R /r )cosij,'dxd<j,z. (27 .15) 

We have from fig. 13 

sinij,' = Rsincj>/r, r2 = x2 - 2xRcoscj> + l, (27. 16) 

so that by putting (27.16) into (27.15) we obtain for the z-component Qf the elemen­

tary torque 

R2(x - Rcoscj>) dxdcj> (27.17) 
(x2 - 2xRcoscj> + R2 )3/2 · 

As x > Rcoscj>, the torque is directed along the z-axis and thus leads to anti­

clockwise rotation. 

To obtain the torque acting on the whole circular current, we have to integrate 

formula (27. 17) and we obtain 

271 2 271 
M = f dcj> f R ( x - Rcoscj>) dx = f R dcj> = R ln tan71. ( 2 7. 18) 

o R (x2 - 2xRcoscj> + R2 )3/ 2 o2sin(cj>/2) tanO 

Taking into account formulas (27. 7) and (27.18), we see that the torque which the 

internal and external radial currents exertson the circular current is finite and 

equal to 271R. 

27.4. ACTION OF THE CIRCULAR CURRENT ON THE EXTERNAL RADIAL CURRENT. 

Here again as in Sect. 27.2 we exchange the directions of the circular and radial 

currents to the opposite to have the angles 1j, and ij,' less than 71/2. 

The elementary torque about the z-axis appearing as a result of the action of the 
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circular current elerrent dr' on the radial current elerrent dr can be obtained exact­

ly in the sarre way as in Sect. 27.2 (fig. 12 can be used by considering the element 

dr outside the circle). For the z-colll)onent of the acting elerrentary torque we shall 

obtain_ formula (27.12). 

For R > xcos<P the torque is positive and for R < xcoscp the torque is negative. 

As for x near to the circle, where the acting force is the largest, we have 

R < xcoscp,· I shall write the torque as a negative number -D, where D, because of the 

appearing singularity, is infinitely large 

211 "' 2 
M= fd<Pf R(R-xcos<P)dxdcp D. (27.19) 

o R (R2 - 2xRcos<P + x2)3/ 2 

27.5. ACTION OF THE AXIAL CURRENT ON THE CIRCULAR CURRENT. 

Before beginning with the cal cul at ion, let rre note that the torque exerted by the 

circular current on the axial current obviously is zero. as the levers of the forces 

are null (see fig. 9). 

The elerrentary torque about the z-axis appearing as a result of the action of 

the axial current elerrent dr' on the circular current elerrent dr will be given by 

formula (27. 1). Putting in it (24.3) we obtain 

dM = (R2;r 2 )pxcosw'~drdr'. (.27.20) 

We have from fig. 9 

cos w ' = - z/ r, (27 .21) 

so that by putting (27.21) into (27.20) we obtain 

2 
dM = _ R z dz d<P 

(z2 + R2)3/2' 
(27 .22) 

The elementary torque is obviously negative. For the 

211 "' . 2 
M=- fdcpf R zdz 

o o (z2 + R2)3/2 

integral torque we obtain 

211 
f R dcp = - 211R. (27.23) 
0 

The torque with which the rectangular current acts on the circular current will 

be the sum of the torques (27. 7), (27.18) and (27.23) and is null as it must be. 

The torque with which the circular current acts on the rectangular current wi 11 

be given by the sum of the torques (27.13) and.(27.19). As it also must be null, we 

shall have B = D. 

The torque acting on the moving part of Si galov 's experi rrent (fig. 10) wi 11 be 

the sum of the torques (27.7), (27.13), (27.18) and (27.23). Thus it will be equal 

to the positive number B. As a matter of fact Si gal ov 's e xperi rrent is a s i Ill) 1 ifi ed 

variation of the cerrented Barlow disk (see Sect. 47). If the sliding contact will 

be not at point E but at point F and the circular current will not rotate, Sigalov's 

experirrent will be a simplified variation of the uncerrented Barlow disk. As the net 

torque on the current in the circular wire is null, its rest or rotation is immaterial. 
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28. THE ROTATING AMPERE BRIDGE (RAB) 

The drawing of the circuit which I have called ROTATING AMPERE BRIDGE (RAB) is 

presented in fig. 14. Current I cones from "infinity" along the upper axial wire 

Po; flows along the upper rotating and propulsive arms DA and AB with lengths R, 

along the shoulder BB', then along the lower propulsive and rotating arrns B'A' and 

A'O' and along the lower axial wire O'P' goes to "infinity". 

Easily can be seen, taking into account Whittaker's formula (24.3), that the net 

torques about the z-axis produced by the interaction of the currents in the follow­

ing wires are null: (i) axial wires and rotating arms, (ii) axial wires and shoul­

der, (iii) shoulder and propulsive arms, (v) action of propulsive arms on axial 

wires, (vi) action of shoulder on rotating arms. 

Different from zero are only the torques due: (i) to the action of the currents 

in the axial wires on the currents in the propulsive_ arms, (ii) to the interaction 

of the currents in the rotating and propulsive arms, and (iii) to the action of the 

currents in the rotating arms on the current in the Shoulder. 

Now I shall calculate the respective torques, omitting also in this section to 

write the factor I2 /c 2 in the formulas. 

dr' 
p 

z 

r 

0 
y 

dr 

O' 

B' 
P' 

Fig. 14. the rotating Arrpere bridge. 
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28. 1. ACTION OF THE AXIAL CURRENT ON THE PROPULSIVE ARM CURRENT. 

A current elenent Idr' along the axial wire PO acts on a current elenent Idr 

along the propulsive arm AB, to which the vector distance is r, with the elenental 

force .generating torque about the z-axis 

df = (r.dr')dr/r 3 = cos(r,dr')drdr'x/r 2 = z dxdzx/(x2 + z2 +R2 )31 2 . (28.1) 

The JT()nent o·f this force about the z-axi s will be 

dM = (xx +ll;y)xzdxdzx/(x2 + z2 + R2 )3/ 2 = - Rzdxdyz/(x 2 + z2 + R2 ) 3/ 2 . (28.2) 

For the z-corrponent of the integral torque we obtain, taking AB= R, PO= 00 , 

R oo R 
M = - J f Rzdxdz/(x2 + z2 + R2 )31~ = - R J(x2 + R2 )- 112dx = - RArsinhl. (28.3) 

0 0 0 

If the shoulder BB' is long enough, we can neglect the torque produced by the 

action of the axial wire current PO on the current in the propulsive arm B'A'. Thus 

taking into account also the torque due to the action o·f the current O'P' on the 

current B'A', we shall obtain for the z-corrponent of the net torque 

Mnet = - 2 RA rs i nh 1 = - 1. 7628R; (28.4) 

28.2. INTERACTION BETWEEN THE ROTATING ARM CURRENT AND THE PROPULSIVE ARM CURRENT. 

Let us calculate first the force with which a current elenent dr' of the rota­

ting arm OA acts on a current elenent dr of the propulsive arm AB, denoting by r 

the vector distance from dr' to dr (r is not shown in fig. 14). According to for­

mula (24.3), in which we exchange the places of the first two terms, we shall have 

df" {(r.dr)dr' + (r,dr')dr}/r 3 = {J\9 + (R-y)x}dxdy/r 3 . (28.5) 

The JT()Tient of this force about the z-axi s wi 11 be, if denoting by a the vector 

distance from the axis to the element dr and by a the angle concluded between the 

vector a and the y-axis, 

dM = ax{xy + (R-y)x}dxdy/r 3 = 11{xsina - (R-y)cosa}zdxdy/r
3 = (28.6) 

{x2 - (R-y)R}zdxdy/{x2 + (R-y)2} 312 . (28.6) 

Let us now calculate the force with which the current element dr of.the propul­

sive arm AB acts on the current elenent dr' of the rotating arm OA, denoting also 

in this calculation by r the vector distance from dr' to dr, 

df' = {- (r.dr' )dr - (r.dr)dr'}/r 3 = {- (R-y)x - >\9}dxdy/r 3. (28. 7) 

The JT()nent of this force about the z-axis will be 

,.. ,., ,,. · 3 ,.. 2 2 3/2 
dM' = yyx{ -(R-y)x - JIY}dxdy/r = y(R-y)zdxdy/{x + (R-y) } . (28.8) 

The net torque due to the interaction of the current elenents in the rotating 

and propulsive arms will be the sum of the torques (28.6) and (28.8) 

dMnet = dM + dM' = {x2 - (R-y)2}zdxdy/{x2 + (R-y)2} 3/ 2 . (28. 9) 
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The integral torque produced by the interaction of the currents in the rotating 

and propulsive arms will be obtained by integrating the elemental torque (28.9) for 

x in the limits from Oto Rand for y in the limits from O to R. If making then the 

substitution R-y = Y, dx = - dY, we obtain for the z-component of the net torque 

-R R . RR 
Mnet = f f{i -(R-y)2}dxdy/{x2 +(R-y) 2}312 = f f(x2 - Y2 )dxdY/(x 2 +v2) 3/ 2 = 0. 

o o O O (28.10) 
Thus the net torque due to interaction of the currents in the rotating and 

propulsive arms is null. 

28.3. ACTION OF THE ROTATING ARM CURRENT ON TilE SHOULDER CURRENT. 

A current element dr' along the rotating arm OA acts on a current element dr of 

the shoulder BB', to which the vector distance is r, with the elemental torque 

dM = Rxxdf, (28.11) 

in. which we have to put for the elemental force, denoting by z the distance from B 

·to dr, 
df = (r.dr)dr'/r 3 = (z/r)y/r 3. (28;'.12) 

Thus we obtain for the z-component of the whole torque, taking BB' = co, 

M = J\y f ---=-......,,...Rz____,,dz,........,,.= = JR qy RA . h 1 
o O {(R-y)2 +R2 +z2}3/2 0 {R2 + (R-y)2}1/2 = rsin · 

(28. 12) 

The same torque will be produced by the action of the current in the rotating 

arm A'O' on the current in the shoulder BB'. Thus for the z-component of the net 

torque acting on the current in the shoulder we obtain 

Mnet = 2RArsinhl = 1.7628R. (28.13) 

Comparing formulas (28. 4) and (28.13) we see that the net torque due to the in­

teraction of all currents in the rotating Ampere bridge is null. 

One can easily see that if the length of the shoulder will be not considered as 

very long, the net torque acting on RAB will be again zero. In such a case the net 

torque acting on the shoulder will be less than (28. 1~) but besides the negative 

torque (28.4) there will be a positive torque acting on the current AB in the pro­

pulsive arm due to the lower axial current O'P'. The relevant calculation gives for 

the net torque again null result. 

As all current elements in RAB are mutually perpendicular, the calculation with 

Nicolaev's formula will lead to the same result. 

Easily can be calculated( 22 ) that also according to Grassmann's formula the 

torque in RAB must be null. 

Ampere's formula which preserves Newton's third law, of course, will lead to a 

null torque in RAB. 



,_ 102 -

29. ELECTROMOTO!o DRIVEN BY VECTOR ANO SCALAR MAGNETIC INTENSITIES 

The vector and scalar magnetic intensities are defined, respectively, by these­

cond and third formulas (8.6). 
If not Whittaker's formula (24.3) but, Nicolaev's formula (24.12) will be the 

right one, the scalar magnetic intensity is to be written not in the simple Whitta­

ker's form (8.6) but in the complicated Nicolaev's form (24.14). Without precising 

the exact mathematical expression of the scalar magnetic intensity S through the 

magnetic potential A (for the time being when not enough experimental evidence is 

accumulated), I shall call scalar magnetic intensity this.potential force which acts 

along the test current element and vector magnetic intensity this one which acts at 

right angles to tlie test current element. When it will be necessary, I shall present 

the scalar magnetic intensity preferably in its Whittaker's form. 

The ELECTROMAGNETIC MOTORS which are driven by the vector magnetic intensity B 

(such are:~ electromotors built by humanity in two centuries of electromagnetism) 

will be called B-MOTORS and the electromagnetic motors which are driven by the sca­

lar magnetic intensity s (see Sects.SB -60) will be called S-MOTORS. 

Here I shall present the most simple S-motor which still I have- not constructed, 

but I havE! no doubts that it would not work in the predicted way. 

We. have found in Sect. 27.5 that the torque with which an axial current acts on 

a circular current (see fig. 9) is given by formula (27.23). As in all formulas of 

Sect. 27, for brevity's sake, the common factor II '/c 2 was omitted, let us write 

again this formula in its complete form: Thus the z-component of the torque with 

which a vertical positive current I' acts on a current I flowing along a circle 

with radius R in the positive (anti-clockwise) direction is 

M = - 2nll'R/c 2 . (29.1) 

Let us then construct our S-rotor in the following way (fig. 15): 

A condenser C with a big capacitance is charged to a high potential. The vertical 

wire ac, which at its lower end is connected with a big metal sphere, can make suc­

cessively contact with the positive and negative electrodes of the condenser C. If 

this contact will be made with a frequency equal to the own frequency of Oscillations 

of the suspended on strings permanent ring magnet, this magnet can be set in oscil­

lations. Indeed, the permanent ring magnet can be presented as two circular currents, 

I, with radii equal to the internal and external radii of the ring magnet, Rint and 

Rext· The torque acting on these circular currents, for the roment shown in the fi­

gure when -electrons fly from the left plate of the condenser downwards to the big me­

tal sphere (i.e., when the current is pointing upwards) at the indicated directions 

of the currents in the magnet (on the internal periphery the current is flowing clock­

wise and on the external periphery anti-clockwise) will be 

Mnet = Mint+ Mext = (2nll '/c
2

)(Rint - Rextl• (29.2) 
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Thus the TIDtion of the magnet at this laps of tirre will be negative (clock-wise). 

At the next laps of tirre, when the metal sphere will be connected to the right, po­

sitive electrode of the big condenser, the TIDtion of the magnet will be positive . 

.Let now exchange the ring magnet in fig. 15 by a circular wire and Jet insert in 

it a source of alternating electric tension with frequency v. If the frequency with 

which· the wire ac is connected successively to the negative and positive electrodes 

of the condenser C will be also v, the circular current wire will begin to rotate. 

As the morrent of force with which the circular current wire acts on the vertical 

current wire is zero, this experirrent will present a patent violation of the angular 

rrorrentum conservation law. 

It is interesting to note that the scalar magnetic intensity with which the elec­

tromagnetic system consisting of the driving big condenser C, the wire ca an·d the 

big "storage" sphere acts on the circular current can be calculated either as a mag­

netic effect by the help of the last equation (8.6) or as an electric effect by the 

,help of equation (8.10). The force on the circular current will act in the direction 

of the current when divA < O, i.e., a<1>/at > 0, or against the direction of the cur­

rent when divA > 0, i.e., a<1>/at < 0. 

These childichaly simple and clear effects are absolutely unknown to offial phy­

sics. 

C + 
+ 
+ 
+ 
+ 

C + 

Fig. 15. S-rrotor with interrupted current. 

Fig. 6 
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Let us make these two types of calculation for the experi nent shown in fig. · 15, 

making use also of fig. 9. We suppose that the current wire ac is infinitely long 

and that a constant current I' flows along it from point a ·(where there is a big 

"storage" sphere charged with positive charges) to point c (where there is another 

"storage" sphere charged with negative charges). The magnetic potential generated 

by the current I' along the circular loop with radius R will be 

A= i1 1 dzz/cr = (I'/c)i dzz/(R 2 + z2)l/ 2. 
0 0 

The scalar magnetic intensity generated by this vertical 

cular loop wi 11 be . 
00 

S = - divA = - aA/ar = - (I'/c)Jzdz/(R 2 +z2) 3/ 2 

0 

(29. 3) 

current along the cir-

= - I'/cR. (29.4) 

We shall obtain the sane value for the scalar rmgnetic intensity, if calculating 

it according to formula (8.10). To rmke the calculation more simple, let calculate 

S in the equatorial plane of the storage sphere at a distance R from its center. 

The potential of the charges q on the sphere at a distance R from the center is 

ii>= q/R, independently of the radius of the sphere( 5 l. When the current extracting 

charges from the storage sphere is I', for a tine lit the extracted charges will be 

!'Lit and we shall have for the scalar rmgnetic intensity 

s = ao1>/cat = (1/c)M/llt (q - I 'llt)/R - q/R _ I '/cR, 
cllt 

(29.5) 

what is exactly the value (29.4). 

Let ne note that yet Grassmann{lB) pointed out that the observation of the action 

of open currents on other currents (current elenents) is of a high importance. For 

fey big surprise, to the best of fey knowledge, no such quantitative observations have 

been done in the 150 years after Grassrmnn. Here I should like to cite sone remar­

kable lines of Grassrmnn:{lB) (p. 14) 

Oberhaupt ist klar, daB eine Entscheidung zwischen beiden Theorien (Ampere's 
and Grassmann's theories), da die Wirkung, welche geschloBene Strome Uben, 
nach beiden dieselbe ist, nur rri:iglich ist, wenn man die Wirkung betrachtet, 
welche ein begranzter Strom Ubt ... Der begranzte Strom wUrde daher so her­
vorzurufen sein, daB man zuerst etwa zwei Kugeln mit entgegengesetzter Elek­
trizitat moglichst stark lUde, und sie dann nach der Ladung (nicht wahrend 
derselben) in leitende Verbindung brachte. Dann hatte man die Wirkung dieses 
begranzten Stromes auf irgend einen elektrischen Strom oder besser auf einen 
Magneten zu beobachten, und die Anordnung dabei so zu treffen, daB die Wirkun­
gen nach beiden Theorien moglichst verschieden erfolgen. 

If soneone had followed Grassmann's advice and had done the experiment shown in 

fig. 15, one would had observed the rotation of circular current rmny and many years 

!99._, and the wrong dogma that the rmgnetic force acting on a current element must 

be always at right angles to the element would not survi\e al 1 these years. Neither 

Maxwell's dogma about the closed currents could then survive. 

Now I shall reveal a very interesting aspect of the S-motors, namely that not 
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back but forth tension is induced at their rotation. 

If the current along the circular loop is flowing anti-clockwise (as in fig. 9), 

the forces acting on the current conducting charges, according to the fourth formula 

(21..1) - as well as according to formula (24.15) - will be directed against their 

velocities, so that the circular.wire will begin to rotate in a clockwise direction. 

At this motion, all positive charges in the wire which can become current conducting 

charges will obtain a low convection velocity in a clock-wise direction. The scalar 

magnetic intensity (29.4) will begin to act on these convected charges.according to 

the fourth formula (21.1), with an electrorootive force opposite to their velocity, 

i.e., with a force pointing along the direction of the initial driving current. 

The force acting on a unit convected positive charge will be the induced elec­

tric intensity (see again formula (29.4)) 

Eind = (v/c)S = !1RSn/c
2 = - nI 'n/c

2
, (29.6) 

where !1 is the angular velocity of rotation of the circular wire and n is the unit 

vector at any single point of the wire pointing along its linear rotational velocity, 

i.e., against the direction of the initial driving current. Thus the electric inten­

sity induced by the scalar magnetic intensity is directed along the driving current 

and I call it INDUCED FORTH ELECTRIC INTENSITY. 

The induced electric tension will be 

uind = J Eind'dr = - (27r/c2)nRI'. 
27fR 

(29.7) 

and will also act in anti-clockwise direction, i.e., will have the sane direction 

as the driving electric tension, Udr' and I call it INDUCED FORTH ELECTRIC TENSION. 

We knON that the tension induced in rooters driven by a vector magnetic intensity, 

B, is always opposite to the driving tension and for this reason it is called INDU­

CED BACK ELECTRIC TENSION. And one can immediately show why in 8-rootors a back elec­

tric tension is induced: 

Let us have a current element Idr put in a vector magnetic field B which is per­

pendicular to dr. The force acting on this current element, according to the third 

formula ( 21. 1) is 

dfwire = (Idr/c)xB. (29.8) 

The velocity v acquired by the wire will have the direction dfwire which is 

drxB/drB, and the induced electric intensity acting on the convected charges will 

be, again according to the third formula (21.1), 

cEind = v(drxB/drB)xB = - (v/drB)Bx(drxB) = - (v/drB)B 2dr = - vB(dr/dr), (29.9) 

i.e., it win be directed against the driving electric intensity (and te~sion) which 

acts in the direction dr/dr. 

After having presented the "mechanismu- according to which a forth electric ten­

sion is induced in S-rootors and a back electric tension is induced in B-notors, let 

us make a nore detailed corrparison between a B-motor and an S-motor. 
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Let us assurre that both nutors have the sane ohmic resistance R0 and that they 

are dri vrm by equal driving tensions Udr· Thus the rest current in both rootors will 

be the sarre lrest = Udr!Ra-
If we let the B-rrotor rotate, it wi 11 acquire such an angular veloei ty n that its 

friction power Pfr = nMfr• where Mfr is the friction torque at the angular velocity 

n, will oecone equal to the induced back power Pind = IUind• where Uind is the ind­

eed back tension and I is the current in the rootor at the angular velocity n. 

Indeed, let us assurre, for silll)licity, that the rootor is a Barlow disk (see Sect. 

47) with radius R in which the cylindrical magnetic field with intensity B is gene'." 

rated by a cylindrical magnet. The driving torque is produced by the interaction of 

B and the current I which flows along the disk's radius. If we consider only one 

current element Idr at a distance r fro!'] the center, the driving torque produced by 

its interaction with B will be dMdr = rdf = rldrB/c, where df = ldrB/c is the force 

acting on the current element. The motor will stop to increase its angular velocity 

when the sum of all these elementary torques will become equal to the friction torque 

Mfr. At the "equilibrium" angular velocity n, when the current. in the circuit will 

be I, we shall have 
R R R 

r!Mfr.= n fdMfr = n frldrB/c = I /vBdr/c = IUind' 
0 0 0 

(29.10) 

where v is the velocity of the disk's parts with radius r and Ui nd is the induced 

back electric tension. For the current we shall have I= (Udr - Uind)/R 0 • At rest 

of the disk the power Prest = IrestUdr = I~estRa will be released as heat. At rota­

tion of the disk the power P = I(Udr - Uind) = I2Ra will be released as heat and 

the power Pmech = IUind will be delivered as mechanical power overwhelming the fric­

tion. The power delivered by the driving electric source Pdr = IUdr will be the~ 

of the last two powers. 

If we let the S-rootor rotate, it will acquire such an angular velocity n that its 

friction power Pfr = Mfr will become equal to the iduced forth power Pind = IUind· 

Indeed, let us assume, ·for silll)licity, that our rootor is of the kind of the roo­
tor shown in fig. 9, assuming that at the point a there is a huge store of positive 

charges and at point c there is a huge store of negative charges, so that certain 

time a c;onstant current I' flows from point a to point c. The driving torque produ­

ced by the action of the scalar magnetic intensity Son the current along the cir-

cular loop will be 
(29.11) 

where (see (29.4)) 

dfwhit = ldrS/c = - Il'dr/c
2

R (29.12) 

is the force acting on the current element ldr. Putting (29.12) into (29.11), we ob­

tain for the z-colll)onent of the driving torque 
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Mdr = - f II' dr/ c
2 = - 21rRI I'/ c

2
. 

2,rR · 
(29. 13) 

The 100tor will stop to increase its angular velocity when its driving torque 

will become equal to its friction torque. At such an "equilibrium" angular velocity 

n we shall have (see (29.7)), noting,that Mfr and Mdr•at the "equilibrium" an-

gular velocity n, are equal but oppositely directed, 

2 
nMfr = nMdr ~ - (21r/c )nRII' = IUind· (29.14) 

At such a stationary rotation the power P = I(Udr + Uind) = I2R0 will be released 

as heat and the power Pmech = IUind will be delivered as mechanical power overwhel­

ming the friction. The power delivered by the driving electric source Pdr = lUdr 

will be the difference of these two powers. 

The driving torque of the 8-100tor is the largest at rest of the 100tor and reaches 

its minimum at the angular velocity n. The driving torque of the S-100tor is the less 

at rest and reaches its maximum at the angular veloc'ity n. 

If the friction power nMfr will always remain less than the mechanical power 

IUind• the S-IOOtor will steadily increase its. angular velocity until the destruction 

of the 100tor by the appearing centrifugal forces. Thus the S-100tor violates the 

energy conservation law. 

A 8-100tor can be run as a GENERATOR (machine generating electric tension and 

eventually electric current and power) if applying to it a mechanical torque. The 

mechanical torque which appears in a 8-GENERATOR,because of the interaction 

of the induced current with the 8-field, is always directed oppositely to the dri­

ving mechanical torque and brakes the rotation. In every conventional B-generator 

the produced electrical power is equal to the mechanical power lost by the source 

of mechanical energy. Let me note, however, that I have constructed 8-generators 

where quite the whole produced power is "free", i.e. , produced from nothing; such 

are ny non-braking B-generator MAMIN COLIU (Sect. 53) and the self-accelerating 

generator VENETIN COLIU (Sect. 54). 

The considered above S-!00.tor can also be run as a generator, applying to it a me­

chanical torque. The mechanical torque which appears in an $-GENERATOR, because of 

the interaction of the induced current with the S-field, is always directed in the 

direction of the driving mechanical torque and supports the rotation . .The produced 

electric power in the S-generator is equal to the mechanical power gained by the 

source of mechanical energy. 

If Whittaker's formula is the right one, a scalar magnetic field can be not pro­

duced by closed current loops, as the divergence of the magnetic potential produced 

by a closed current loop is zero accordingtol'.Jhittaker's formula. As, however, it is 

very likelr that Nicolaev's formula is the right one, S-motors and S-generators can 

be "driven" by closed currents. Such machines are considered in Sects. 58 -60. 
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30. QUASI-STATIONARY ELECTROMAGNETIC SYSTEMS 

I make the following classification of the material systems (see also Sect. 9): 

1. A material sytsem is called STATIC if there is such a frame of reference with 

respect to which its particles remain at rest. The image (see Sect. 2) of a static 

system remains the same in time. 

2. A material system is called QUASI-STATIC if its images remain the same in time 

but there is no such a frarre of reference with respect to which its particles remain 

motionless. According to this definition, the particles of a quasi-static system can 

move with respect to each other, but in the direction of their velocities they must 

be placed closely enough and they must have the sarre character, so that they may be 

distinguished by their serial numbers only. If we do not pay attention to their se­

rial numbers, such a system will, in different moments of tirre, create the same image 

in our mind. The moving points of a quasi-static system.always form ring-shaped cur­

rent tubes. 

3. A material system is called STATIONARY if some of its characteristics re.main 

constant in time. The quasi-static system represents the most simple stationary sys­

tem because the whole complex of characteristics, namely its image, remains constant 

in time. 

4. A material system is called QUASI-STATIONARY if some of its characteristics 

change insignificantly in time or in certain specific time interval. 

5. A material system is called DYNAMIC if its images change in time. 

6. A material system is called PERIODIC if its images repeat themselves regularly 

after some time interval. This time interval is called PERIOD. 

7. A material system is called QUASI-PERIODIC if its images repeat themselves af­

ter some time inte·rval but not completely; however, after sufficiently long period 

of time (i.e., with the increase of the number of the "quasi-periods") the image of 

the system approaches closely enough its initial image. 

The field of static and quasi-static systems of electric charges is called a CON­

STANT ELECTROMAGNETIC FIELD. 

Let us consider a system of electric charges which generates the potentials <Ii and 

A (given by formulas (8.1)) in the different space points. 

1. If 

the system is static. 

2. If 

ai;at = o, 

ai;at = o, 
the system is quasi static or stationary. 

3. If 
a<1>/at I o, 

but we can assume 

A= 0, ( 30.1) 

aA/at = o, { 30.2) 

aA/at I o, {30. 3) 

( 30.4) 
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the system is quasi-stationary. 

The conditions (30.4) can be fulfilled strictly only if~ and A are linear func­

tions of tine (for exa~le a circular current which constantly increases its radius). 

If the system is periodic, the conditions (30.4) cannot be fulfilled. But if the 

periodic change is slow and for long enough tine intervals we can accept that ~ and 

A are· linear functions of tine, we can accept the system to be quasi-stationary. 

Usually if the shortest period of the system Tmin is much larger than the tine 

t = Dmax/c, where Dmax is the largest size of the system, the system is quasi-sta­

tionary. 

Another criterion for accepting an electromagnetic system to be quasi-stationary 

is the following: The effects due to the accelerations (second tine derivatives) of 

the charges (i.e., the radiation of the charges) must be feeble and thus can be neg­

lected . 

. For a quasi-stationary system not equations (9.16~ but equations (9.15) are va­

lid. Let us write them again 

M = div(grad~) = - 411Q, M = grad(di.vA) - rot(rotA) = - 411J. (30.5) 

As I showed in Sect. 9, these equations are trivial mathematical results of the 

definition equalities (B.1) for the electric and magnetic potentials and equalities 

(9.14) for the charge and current densities. 

Another trivial result of equations (8.1) is the equation of potential connection 

(8.8) which I write here again 

divA = - a~/cat. (30.6) 

Let us write again the first notation (21.1) and the second notation (8.6) 

Ecoul = - grad~• 8 = rotA, ( 30. 7) 

called Coulont electric intensity and magnetic intensity. 

If we rewrite the second equation (21.1) and we take divergence from the second 

expression (30.7), we obtain 

or 
Etr = - aA/cat, 

rotEtr = - aB/cat, 

div(rotA) = 0, 

di vB = 0. 

(30.8) 

( 30. 9) 

If we substitute (30.6) and the second expression (30.7) into the second equation 

(30.5) and if we rewrite the first expression (30.5), we shall have 

rotB = - a(grad~)/cat + 411J, div{ grad~) = - 4TTQ, { 30. 10) 

or 

rotB = aEcou/c at + 411J, di vEcoul = 411Q. i• ( 30. 11) 

Equations (30.8) and {30.10) are the Maxwell-Lorentz equations for a quasi-statio­

nary system of electric charges in their rrost logical form. 

Equations (30.9) and (30.11) are the Maxwell-Lorentz equations for a quasi-statio-
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nary system in their usual form. It is·extrenely irrportant to note that Etr in the 

first equation (30.9) is completely different from Ecoul in the first equation 

(30. 11). These two electric intensities have noting in comnon. However Bin the 

first equation (30.9) and Bin the first equation (30.11) is one and the sane quan­

tity. 

Official physics defends the opinion that a magnetic field can generate elecric 

field and electric field can generate magnetic field. This is a corrplete nonsense 

(this view-point is defended also by Jefinenko in his new book "Causality, electro­

magnetic induction and gravitation" ( Electret Scientific Corrpany, Star City, WV 26505, 

USA, 1992)). The electric and magnetic intensities are determined (and defined!) 

by the potentials and only by the potentials. 

Now I shall examine the highly controversial problem about the "DISPLACEMENT CUR­

RENT" (see Sect. 13). I shall show that there is nothing puzzling here if this no­

tion will be rightly understood. 

Maxwell supposed that if a conduction current becones interrupted at the plates 

of a condenser, between those plates a current with density (13.12) "flows", cal-

led "displacenent current". Maxwell supposed that displacenent current has the sane 

magnetic character as conduction current with the sane density, i.e., that it acts 

with potential magnetic forces on other currents and reacts with kinetic forces 

against the potential magnetic action of other currents. And Maxwell supposed (or 

such was rather the interpretation of his epi gones) that all this is done by the 

hypothetical current "flowing between the plates of the condenser". This is absolute­

ly not true. 

It is obvious that such a displacement current cannot react with kinetic forces 

against the action of other currents,· as it flows in vacuum, and neither the Lord 

is able to set vacuum in motion. On other side vacuum cannot act with potential for­

ces on other currents as vacuum is vacuum ('"a rose is a rose, is a rose, is a rose"). 

To understand the essence of the displacenent current, let us consider not the 

differential equation (30.11) but the integral equation (13.11), rewriting it for a 

quasi-stationary system 

1B.dr = (a/cat)fE O l .dS + (4n/c)/J.dS. 
L S c u S 

(30.12) 

The magnetic intensity is generated by the currents in whole space. Meanwhile in 

(30. 12) the linear integral of B along the closed loop Lis related only to the con­

duction currents crossing the surface S. If fromboth sides of S there are condenser's 

plates which interrupt conduction currents, these interrupted currents generate such 

an electric intensity field Ecoul between the condenser's plates that 

~B. dr = ( a/cat)fE u1.ds. (30.13) 
L S co 

Thus it is not the changing electric field aEcoul/at which generates B. The integral 

on the right side of ( 30.13) gives si rrply information about the quantity of conduc-
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tion current interrupted on the surface S. Consequently the magnetic intensity cal­

culated by formula (30.13) is generated by charges flowing to the condenser's plates 

and these charges react with kinetic forces to the action of other currents flowing 

bet~een the condenser's plates or outside. 

If aEcoul/at = 0, formula (30.12) shows that jB'.dr is determined only by the 

quantity of current crossing the surface. This is true. But when one begins to cal­

culate to find 8, one sees that one has to take into account the currents in whole 

space. The displacement current term in (30.12) indicates that when making integral 

calculations to find Bone has to take into account also the interrupted by· the sur­

face S currents. 

That's all about the displacement current! 

Let us now assume that the considered electromagnetic system consists not only 

of charges (free or in conductors) but also of dielectrics and magnetics. In such a 

case the MaJ<Well-Lorentz equations (30.9) and (30.11} are to be written in the form 

rotEtr = - clB/cat, 

rotH = aD/c at + 411J, 

divB = 0, 

di vD = 411Q. 

(30.14) 

(30.15) 

Now, if there is a condenser between whose plates a dielectric with permittivity 

~ is put, between these plates a POLARIZATION CURRENT will flow with density 

Jpol = a(D-E)/cat = (E -l)aE/cat. (30.16) 

This current does not transfer charges from one plate of the condenser to the 

other, as the case will be if the plates will be connected by a wire. aecause of the 

orientation (or polarization) of the molecular electric dipoles along the field of 

the acting electric intensity E, generated by the charges on the plates, it seems 

that charges have been transferred, but, as a matter of fact, charges have not been 

transferred. 

The same phenomenon appears also when there is vacuum between the plates.: as the 

charges coming to one of the plates repel by electrostatic induction charges of the 

same sign from the other plate, it also seems that charges have been transferred. 

Thus there are many conmon features between pol ar.i zati on current and displacement 

current, and some people call also the polarization current "displacement current". 

I, however, rigirously separate than. In any case, both the displacement and polari­

zation currents do not act with potential magnetic forces on other currents and do 

not react with kinetic forces against the potential action of other currents. I con­

firmed these assertions experimentally (see Sects. 61 and 62). 

31. ELECTRIC DIPOLE MOMENT 

Let us consider the constant electric field of a stationary system of charges at 

large distances from the system, that is, at distances large compared with the dimen­

sions of the system. 
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We introduce a frame of reference with its origin somewhere in the system of char­

ges. Let us denote the radius vector of the reference point by r and the radius vec­

tor of the various charges by ri. According to the first formula (B.1), the electric 

poten~ial generated by the system at the reference point wili be 

where 

n 
<I> = l q./R. 

i =1 l l 

n 
l q;I Jr - ri I, 

i =1 
( 31.1) 

(31.2) 

is the vector from the charge qi to the reference point. 

Let us investigate expression (31.1) for larger, i.e., for r » ri. To do this, 

let us expand (31.1) as power series in ri, retaining only the terms linear in ri, 
n n n 

<l>(jr - ri I)= <l>(r) - j {a<l>(r)/ar}.ri = l q./ri - grad(l/r). l q.ri. (31.3) 
l=l i=1 1

. i=1 1 

If we denote the total charge by 
n 

q I q .• 
i =1 1 

formula (31.3) can be written 

<I> = q/r + d.r/r3. 
where the sum n 

d = L q.r. 
i =1 l l 

is called ELECTRIC DIPOLE MOMENT of the system of charges. 

It is irrportant to note that if the sum of all charges is equal to zero 

n 
q = J: -q. = 0. 

i =1 l 

( 31. 4) 

( 31.5) 

( 31.6) 

( 31. 7) 

then the dipole lll)ment does not depend on the choice of the frame's origin. Indeed, 

the radius vectors ri and ri of one and the same charge in two different frames of 

reference, K and K', are related by the formula 

( 31. 8) 

where R is a constant vector, representing the radius vector of the origin of K' in 

K. Substituting (31.8) into (31.6) and taking _into account (31.7), we obtain d = d'. 

Under the condition (31.7), the electric potential in formula (31.5) becomes 

<I> = d.r/r 3. (31.9) 

The electric intensity, according to the first formula (21.1), will be 

E = - grad(d.r/r 3) = - (1/r)grad(d.r) - (d.r)grad(l/r 3). (31.10) 

Keeping in mind that dis a constant vector, we shall have (see p. 6) 

grad(d.r) = d, (31.11) 
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so that 

(31.12) 

If we shall expand <I> in (31.3) to higher orders in ri, we shall obtain other mul­

ti pole moments. The moment which corresponds to the second order terms in the expan­

sion of <I> is called ELECTRIC QUADRUPOLE MOMENT. Two nearly located opposite charges 

are called ELECTRIC DIPOLE. 

32. MAGNETIC DIPOLE MOMENT 

Let us consider the constant magnetic field of a stationary system at large dis­

tances from the system. 

As in the previous section, we introduce a frame of reference with its origin 

somewhere in the system of charges. Again we denote the radius vector of the refe­

rence point by rand the radius vectors of the various charges by ri. According to 

the second formula (8.1), the 110gnetic potential generated by the system at the re­

ference point will be 

( 32 .1) 

Making the assurrption r » ri and expanding (32.1) as a power series to within terms 

of first order in ri, we obtain 
n n 

A(lr - ril) = (1/cr)_}: qivi - (1/c)_L qivi{grad(l/r).ri}. (32.2) 
1=1 1=1 

As all currents in.the system are closed, the first term on the right will be 

equal to zero and we shall have 
3 n 

A= (1/cr l_l qivi(ri.r). 
l =1 

( 32. 3) 

Taking into account that vi = dri / dt and that r is a constant vector, we can write 

n 1 d n 1 n 
.l qivi(ri.r) = -2 -d {_}: qiri(ri.r)} + -2 .l qi{vi(r;.r) - ri(vi .r)}. 
1=1 t 1=1 l=l 

( 32.4) 

If we average this equation in tine, the first term on the right side will give 

zero as a total tine derivative of a limited quantity. Thus introducing the quantity 

n n 
m = (l/2c)}: q.(rixv.) = (l/2c)}: r.xj., 

i=l l l i=l l l 
( 32. 5) 

which is called MAGNETIC O)IPOLE) MOMENT of the system of charges, we can present the 

magnetic potential (32.3) in the form 

A = mxr/r 3• (32.6) 

The magnetic intensity, according to the second formula (8.6), will be (seep. 6) 

(32. 7) 
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Fi rs t we have ( see again p. 6) 

d. r 1 d' ., 1 3 3 r.r 0 , ~ = - 1 vr + r. gra.....-,. = - - - = 
r3 r3 . r3 r3 rs ' 

(32.8) 

and then 

(m.grad) r
3 

= ~
3 

m.grad)r + r(m.gra~
3

) = ~ - 3r(m.r) 
r r r r 3 r5 · 

(32.9) 

Thus for the magnetic intensity (32. 7) we obtain 

B = O(m.r)r - r 2m}/r 5. ( 32.10) 

We see that the magnetic intensity is expressed in terms of the magnetic rroment 

by the sarre formula by which the e.lectri c intensity is expressed in terms of the 

electric dipole 11Drrent (cf. formula (21.12)). 

The magnetic IIDment of the electron is called.MAGNETON OF BOHR and has the value 

( 32.11) 

where qe and me are the charge and the mass of the electron, h is the Planck con­

stant (see Sect. 2) and c is the velocity of light. 

The formula for the magneton of Bohr can easily be obtained from formula (32.5) 

which I shall write in the form 

( 32. 12) 

considering the charge of the electron (and its mass, too) as a ring with radius r 

rotating with a velocity v. Multiplying and dividing the right side of (32.12) by 

me and taking into account that the angular momentum (the spin) of the electron is 

( 32.13) 

we obtain readily formula (32.11). 
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IV. H I G H - A C C E L E R A T I O N E L E C T R O M AG N E T I SM 

33. INTRODUCTION 

In Chapter III the accelerations of the charges were assumed to be small and have 

been neglected. In this chapter I shal 1 not assume the accelerations of the char-

ges as negligibly small. Thus in this chapter the rrost general dynamic system of 

e 1 ectri c charges wil 1 be considered. 

As it will be shown, charges rroving with acceleration radiate energy. The radia­

ted energy is emitted in the form of energetic quanta which are called PHOTONS (with 

more precision - see beneath - ELECTROMAGNETIC PHOTONS). 

The photons always propagate with the velocity c (in absolute space!). The uni­

versal masses of the photons are equal to zero, so that their universal space and 

time rromenta are always equal to zero and only their.proper space and time rromenta 

a re different from zero. 

The proper space and time rromenta of the photons are very small quantities and 

one can observe with macroscopic instruments only the collective action of many pho­

tons. When observing the flux of many photons, as the latter may interfere ( see 

axiom III), the observer remains with the impression that high-accelerated electro­

magnetic systems radiate waves, which are called ELECTROMAGNETIC WAVES. However with 

microscopic instruments, i.e., with particles, one can observe the action of single 

photons. Thus the assertion "photons are at the same time particles and waves" is° 
wrong. The photons are particles, but these particles can interfere if at the rroment 

of observation the distance between them is less than their proper wavelength (see 

axiom III). 

When masses rrove with acceleration radiation of GRAVIMAGRETIC PHOTONS is to be 

expected. I shall show, however, that the radiated gravitational and magretic inten­

sities are so feeble that the detection of gravimagretic photons (waves) is highly 

improbable. 

In high-acceleration electromagnetism I shall ignore the scalar magnetic intensi­

ty. Until the present time experiments derronstrating the existence of high-accelera­

tion effects due to the scalar magnetic intensity (SCALAR ELECTROMAGNETIC WAVES) have 

not been reported. Ni colaev tries to persuade me that he has observed (see "Deutsche 

Physik", 2(8), 24, 1993)) the existence of scal,ar electromagnetic waves but, as I 

show in my comments to his article, his experiments are not convincing me. 

34. THE ELECTRIC AND MAGNETIC INTENSITY FIELDS OF AN ACCELERATED CHARGE 

To obtain the electric and magnetic inten·sities generated by a particle rroving 

with acceleration, we have to put in the definition equalities for the electric and 

magnetic intensities 
E = - gradi!> - aA /cat, B = 11otA ( 34. 1) 



- 116 -

the electric and magnetic potentials of the particle 

4> = q/r, A = qv/cr. ( 34.2) 

However, as information cannot be transferred rronentarily, the observation elec­

tric arid magnetic potentials are to be expressed through the advanced and retarded 

elenents of motion (see Sect. 11). 

In fig. 1 the reference point P, for which we wish to know the electric and mag­

netic intensities at the rronent of observation t, is taken at the frane's origin. 

The charge q generating the potentials and consequently the intensities is shown rro­

ving with a constant velocity v, but we shall assune now that this velocity is not 

constant, i.e., that the charge moves with acceleration. 

Let us assune that at the observation rroment t the charge is at point Q, called 

observation position. Information about the charge's velocity and acceleration can 

be obtained at Pat the observation rronent t = t' + r'/~ = t" - r"/c, if at the ad­

vanced monent t' a signal moving with the velocity c will be sent with this infor­

mation from the advanced position Q' towards P, or if at the retarded rronent t" a 

signal moving with the velocity c will be sent with this information back in tine 

from the retarded position Q" towards P (so that this signal will reach Pat the mo­

nent t which is before the rronent t"). f,\y second axiom asserts that tine has no the 

quality "reversibility", but "mathematics" does not know this! 

The distances r', r and r" are, respectively, the advanced, observation and re­

tarded distances, and the angles a', a, a" between the charge's velocity v and the 

1 i ne joining the charge with the reference poi ~t (whose unit vectors are n', n, n 11
) 

are, respectively, the advanced, observation and retarded angles. 

repeat (see Sect. 10.2) that official physics, proceeding from the wrong con­

cept that the electromagnetic interactions "propagate" with the velocity c, calls 

all topsyturvy, i.e., official physics calls the advanced elenents "retarded" and 

the retarded e lenents ( to which it does not pay much attention) "advanced". I sha 11 

use only ITIY terminology. 

First I shall make the calculation when the observation elements are presented 

by the advanced elements and then by the retarded ones. As the _character of light 

propagation is not Newton-aether but Marinov-aether, the potentials must be taken in 

their Lienard-Wiechert forms (see formulas (11..3)). 

34. 1. CALCULATION WITH THE ADVANCED ELEMENTS OF MOTION. 

The observation Lienard-Wiechert potentials expressed through the advanced ele­

nents are 
4> =---q __ _ A = 

qv (34. 3) 
r' (1 - n' .v/c) er'( 1 - n '.v/c) 

The velocity in the denominators is a certain middle velocity between the advanced 

velocity v' and the observation velocity v, so that moving with this velocity in the time 
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t -t' = r'/c, the charge covers the distance Q'Q. As this velocity appears only in 

corrective terms in the final result, we can take for .it the advanced as well as the 

observation velocity. The velocity in the nominator of A is the observation velocity 

v = v' + ur'/c, (34.4) 

where u is some middle acceleration between the advanced acceleration u' and the ob­

servation acceleration u. To be able to carry out the calculations, we must have the 

same symbol for v in the nominator and denominator of A. Then, after having done ·the 

differentiations, we shall substitute v in all corrective terms by v' and in the 

non-corrective (or substantial) terms according to the relation (34.4). Then we shall 

do the same with the acceleration which will appear after taking ti.me derivative 

from the velocity. As we shall ~ee, the velocity will appear in the final result on­

ly in corrective terms and the acceleration only in substantial terms. Thus the sub­

stitution which we have to do in the final result will be 

V = V', u = u' + w'r'/c. ( 34.5) 

where w' is the advanced super-acceleration of the charge. 

Official physics asserts that the potentials which one has to use at the calcu­

lation of the electromagnetic field of an accelerated charge must be given by for­

mulas (34.3) where vis to be substituted by v'. Such potentials, however, are nei­

ther advanced nor observation, as the pure advanced potentials will be 

<j, I : q/r 1, 

while the observation potentials 

<l> = q/r, 

A' = qv '/er' , 

A= qv/cr, 

( 34.6) 

( 34. 7) 

if expressed through the advanced elements of motion, are to be written in the form. 

(34.3) where v in the nominator of A is to be presented according to (34.4) through 

the advanced velocity and acceleration (as already said, v in the denominators of 

<l> and A is neither the advanced nor the observation velocity of the charge but some 

middle velocity). Thus official physics works( 23) with some "hybrid" potentials which 

are neither pure advanced nor observation and for this reason it cannot obtain the 

radiation reaction intensity straightforwardly, as I do it in 11\Y theory considering 

v in the nominator of A as the observation velocity, so that <l> and A in (34.3) are 

the exact observation potentials (when assuming that light has a Marinov-aether cha­

racter of propagation). 

But why must we express the observation elements of motion in (34.3) - the charge­

observer distance and the charge's velocity - through the advanced ones? The reason 

is not the hypothetical "propagation of interaction". I noticed al ready that as the 

quickest "information link" can be established by the help of light signals, one 

cannot calculate the intensities of a moving charge taking its position, velocity 

and acceleration at this very moment because there is no way to know them. At the 

reference point one can have information only about the advanced (or retarded)ele-
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ments of notion. 

There is, however, also another reason. As the radiated energy propagates with 

the velocity of light, then to calculate the radiated intensities at the reference 

point at the observation noment, one must operate with the advanced charge and cur­

rent densities. Thus we are impelled to express the observation elements of notion 

in (34.3) by the advanced ones in order to obtain right values for the radiated in­

tensities. The mechanics of the rigit calculation when radiation and potential in­

tensities are to be separated becomes very transparent and clear in Sect. 37. 

Let us now do the calculations. 

In formulas (34.1) we must differentiate 4> and A with respect to the coordinates 

x,y,z of the reference point and the time of observation t. But in the relations 

(34. 3) the potentials are given as function oft' and only through the relation 

r' = c( t - t') (34.8) 

as composite functions oft. Now I shall write several relations which will be then 

used for the calculation of the composite derivatives. 

Having in mind the first relation (34.5), we write 

v ~ v' = - ar'/at', ( 34.9) 

where r' is the vector of the advanced di stance pointing from the charge to the re­

ference point. 

Differentiating the equality r 12 = r• 2 with respect tot', we obtain 

and using here (34.9), we find 

ar·• ar' r' -=r'.-
at' at• 

ar' 
at'=-n'.v. 

(34.10) 

(34.11) 

Differentiating (34.8) with respect tot and considering r' as a direct function 

of t' , we find 
~ ~ = at' c(l - -;;--t ); at I dt 0 

( 34.12) 

putting here (34.11), we obtain 

~ =--1 __ _ 
at 1 - n'.v/c 

(34.13) 

Similarly, differentiating relation (34.8) with respect to rand taking into ac­

count that tis the independent variable, we obtain 

~~+~~=-c~; (34.14) 
ar' ar at' ar ar 

putting here (34. 11), we obtain 

~ = - __ n_' ___ _ 
ar c( 1 - n '. v/ c )' 

(34.15) 
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Finally we find the following relation (which will be used only for the cal cula­

tion of B) 

i(r' _ r'.v) = ~r• _ r'.v) + ~r' _ r'.v)~ = 
ar · c ar' c at' c ar ( 34. 16) 

v2 ' n' v2 r'.u n' n , _ !. + ( n , • v __ + r . u ,__ _____ = _ !. + ( c __ + --'-:--::--,---,-----,,---,-
c c c c(I -n'.v/c) c c c 'c(l -n'.v/c)' 

Thus the electric intensity is to be calculated according to the formula (see 

( 34.1)) 

E =_cl$ _ 1 aA __ cl$ _ cl$ at' _ 1 aA at' 
ar cat ar' at' ar c ~ at' ( 34.17) 

If we substitute here the expressions (34.3) and take into account the relations 

(34.13) and (34.15), after sore manipulations, the following final result can be ob­

tained 

E = q 1 - v2;c
2 

(r' _ ~ v) + qr'x{(r' - r'v/c)xu} 
(r' - r'.v/c) 3 c c2(r' - r'.v/c) 3 • 

(34.18) 

where, according to (34.5), vis to be replaced by v•; as it appears only in correc­

tive terms, and u is to be replaced by u' + w'r'/c, as it apppears in non-corrective 

terms. 

One can easily check the equality of formulas (34.17) and (34.18) by reducing the 

first and the second to comron denominators and by resolving all products to sums of 

single terms; then, after canceling mutually sore terms in the nominator of formula 

(34.17), one sees that the remaining terms are equal to the terms in the nominator 

of formula ( 34. 18). 

Rerembering the formula for rotation from a product of a vector and a scalar 

(see p. 6), we have to calculate the magnetic intensity according to the formula 

B = rot qv 
c(r' - r'.v/c) 

q rotv - ~ vxgrad-- 1---. 
c(r' - r'.v/c) c r' - r'.v/c 

(34.19) 

Since we consider the velocity v as a function of r through the advanced tire t', 

we shall have according to the rules for the differentiation of a composite function 

rotv( t') = - ~x ~. 
at ar (34.20) 

Substituting (34.15) into (34.20) and (34.20) into (34.19), we obtain 

B = q uxr' + q vxgrad(r' - r' .v/c). 
c2(r' - r'.v/c)2 c(r' - r'.v/c) 2 

(34.21) 

/> 

Putting here ( 34. 16), we get 

2 
q r'x(-r'u + r'.v u - cv + ~ v - r;.u v). 
r'. v/c) 3 c 

(34.22) 
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Forming the product n'xE (take E from (34.18)), we obtain an expression equal to 

the right side of (34.22) and, thus, we conclude 

B = n 'xE. ( 34.23) 

Now substituting v and u from (34.5), we can present E in a form where only ad­

vanced quantities are present 

E = q (1 - v '2 / c2 )( n ' - v '/ c) 

r 12(1 - n'.vYc) 3 
+ .9..... n'x{(n' - v'/c)xu'} + .9..... n'x(n'xw'). 

c2 r'(l - n' .v'/c) 3 c3 
( 34.24) 

In the last term depending on the super-acceleration we have not taken into account 

the factors which wi 11 give terms, where c wil 1 be in a power higher than 3 in the 

denominator, as such terms are negligibly small. 

Substituting (34.24) into (34.23), we obtain the following expression for the 

. magnetic intensity where only advanced quantities are present 

8 = _ .9. (1 - v•2;c 2)n'xv' + .9..... n'x[n'x{(n' - v'/c)xu'}J _ q
3 

n'xw'. 
c r ' 2 ( 1 - n '. v'/c) 3 c2 r' { 1 - n ' . v' / c) 3 c 

( 34. 25) 

34.2. CALCULATION WITH THE RETARDED ELEMENTS OF MOTION. 

Entirely in the same way as in Sect. 34.1 we can calculate the electric and mag­

netic intensities produced by a charge moving with acceleration, if expressing the 

observation elements of motion through the retarded ones. These calculations are 

done in Ref. 5. Here I shall give only the final formulas which are analogous to for­

mulas (34.24) and (34.25) 

E = q (1 - v
112

;c
2

)(n" + v"/c) t g_n"x{(n" + v"/c)xu"} _ g_n"x(n"xw"), 
r 112(1 + .n".v"/c) 3 c2 r"(l + n".v"/c) 3 c3 ( 34. 26) 

8 = _ .9. (1 - v112;c 2 )n"xv" _ .9... n"x[n"x{(n,,. + v"/c)xu"}] _ s_
3 

n"xw", 
c r"2(1 + n".v"/c) 3 c2 r"(l + n".v"/c) 3 c 

(34.27) 

and the formulas for the observation potentials expressed through the retarded ele­

ments of motion, from which we proceed and which are analogical to formulas (34.3) 

<I> __ q'---, 
r" + r".v/c 

34.3. INTERPRETATION OF THE OBTAINED RESULTS. 

A = qv 
c(r" + r".v/c) 

I shall use the formulas written with the advanced elements of motion. 

( 34.28) 

The three terms in formulas (34.24) and (34.25) are called, respectively, POTEN­

TIAL, RADIATION and RADIATION REACTION ELECTRIC and MAGNETIC INTENSITIES. 

Replacing again the advanced velocity by the observation velocity (see (34.5)), 

the potential electric intensity can be written 

2 2 
Epot = q 1 - v / c ( r ' - vr '/ c) • 

(r' - r'.v/c) 3 
(34.29) 
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Using fig. 1, we can write 

r' - r'.v/c = r' - r'vcos8'/c = {r 2 - (r'vsin8'/c) 2}112. 

According to the law of sines we have 

r'/sin(n - 8) = r/sine', 

so that we can write (34. 30) in the form 

r' - r'.v/c = r(l - v2sin 2e/c) 112 . 

Substituting this into (34.29) and putting there r = r' - vr'/c, we obtain 

In the sane way we obtain for the potential magnetic intensity 

(34. 30) 

( 34. 31) 

(34.32) 

( 34. 33) 

(34.34) 

consider the difference between the "exact" and "non-exact" values of the po­

tential electric and magnetic intensities as due only to the aether-l-1a.rinov charac­

ter of light propagation. Thus I hardly believe that this can be an effect which 

can be physically observed. Conventional physics accepts that the "field" of a ra­

pidly moving charge concentrates to a plane perpendicular to its notion, as for 

a-,. n/2 there is (1 - v2;c 2)(1 - v2sin 2e;c 2 )312-,. 00 when v->- c. I think that the 

effect is only computational and that it cannot be observed. Of course, the last 

word has the experinent. 

Thus the potential electric and magnetic intensities of an arbitrarny moving 

electric charge are determined by the distance from the charge to the reference 

point (being inversely proportional to the square of this distance) and (for B) by 

the velocity of the charge, both taken at the monent of observation. These intensi­

ties are exactly equal to the electromagnetic intensities which the charge· will ori­

ginate at the reference point if the velocity is constant. 

The second terms on the right sides of (34.24) and (34.25) 

· _ q n'x{(n' - v'/c)xu'} 
E d - - -~----~---, 

ra c2 r' ( 1 - n ' . v/ c) 3 
( 34. 35) 

determine the electric and magnetic intensities which the energy radiated by the 

charge originates at the reference point and we call them radiation electric and 

magnetic intensities. As the radiated energy propagates in space with the velocity 

of light c, we do not have to express here the advanced elenents by the observation 

elenenets. Here the "directional" effects are no more cofl1)utational and they can 

easily be observed( 5l. The radiation electric and magnetic intensities are determi­

ned by the distance from the charge to the reference point (being inversely propor-
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tional to this distance) and by the acceleration of the charge taken at the advanced 

rooment. Thus a charge rooving with a constant velocity does· not originate radiation 

i ntens iti es. 

The_ third terms on the right sides of (34.24) and (34.25) 

E =.9._n'x(n'xw') 
rea c3 ' Brea = - :3 n 'xw' = n 'xErea ( 34. 36) 

determine the electric and magnetic intensities acting on the radiating charge it­

self as a reaction to the photon radiation diminishing its velocity and consequently 

its kinetic energy with a quantity exactly equal to the quantity of energy radiated 

in the form of photons. 

The radiation intensities are those which appear at the reference point when the 

radiated photons cross this point; if there are electric charges at the reference 

point, they will come into motion "absorbing" the radiated energy. The radiation 

reaction intensities act on the radiating charge itself. For this reason I call the 

intensities (34.36) electric and magnetic intensities of radiation reaction. 

The electric and magnetic intensities of radiation reaction do not depend on the 

distance between charge and reference point and are determined by the charge 's super­

acce 1 e ration at the advanced rooment, which, of course, can be taken eq ua 1 to the s u­

per-acce l erati on at the observation rooment. 

Thus we see that only the potential and radiation intensities have a character of 

field quantities, because when position, velocity and acceleration of the charge are 

given, these i ntens i ti es a re determined in a 11 points of space, the former "momenta­

rily", the latter with a time delay r'/c. The radiation reaction intensities are de­

termined only for the space point where the radiating charge is located and act only 

on this charge. 

One may wonder that such precised, detailed and complicated information can be 

obtained with some simple mathematics from the extremely simple initial equations 

(34.3) and (34.1), so that here we have to admire the Divinity for His superb per­

fectness and amazing abilities. 

Entirely in the same way, we can establish that the first terms in formulas (34.26) 

and (34.27) give, respectively, the potential electric and magnetic intensities 

(34.33) and (34.34). Thus we conclude that the calculation of the potential electric 

and magnetic intensities with the help of the advanced elements of motion as well as 

with the retarded elements of rootion leads exactly to the same results. 

Let us nON compare the second and third terms in formulas (34.24), (34.25) and in 

formulas (34.26), (34.27). If we assume that the advanced elements of rootion do not 

differ too much from the retarded ones, i.e., if we assume 

r' = r" = r, ¥ 1 = V11 = V, u' = u11 = u, w'=w"=w, (34.37) 

then the electric intensity given by formulas (34.24) and (34.26) and the magnetic 

intensity given by formulas (34.25) and (34.27) can be written as follows 
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E - E + E + E = q !!_ + q nx(nxu) ± 9 -nx(nxw), 
- pot rad rea r2 c2 r c3 

( 34. 38) 

where the upper signs are obtained when the calculation is carried out by the help 

of the advanced elements of mtion, and the lower ·signs are obtained when the calcu­

lation is carried out by the help of the retarded elements of motion. 

As said above, the potential intensities are the same when calculated with the 

advanced and with the retarded elements of mtion. 

The electric intensity of radiation Erad is the same when calculated with the ad­

vanced and with the retarded elements of mtion. However the magnetic intensity of 

radiation Brad is obtained with opposite sign if the retarded elements are used. 

Since we relate the intensities of radiation with the density of the energy flux 

(see Sect. 14) 

( 34. 39) 

we see that the electric and magnetic radiation intensities calculated with the ad­

vanced elements of mtion give an energy flux density directed from the charge to 

the reference point 
2 2 

- _q_{nx(nxu) x (nxu) = - -~ 
2

{(n.u)n - (n.n)u}x(nxu) 
c4r2 c r 

2 
- ~ 

2
{(n.u)nx(nxu) - ux(nxu)} 

C r 

while the electric and magnetic intensities of radiation calculated with the retar-

ded elements of motion give an energy flux density directed from the reference point 

to the charge 
2 (n.u) }n. (34.41) 

As u2 - (n.u)2 .! 0, the flux (34.40) corresponds to the real electromagnetic wave 

radiated in the direction n, while the flux (34.41) corresponds to a wave propaga­

ting in the direction -n. This second wave is fictitious, as it must exist if time 

has the property "reversibility". Thus only the calculation with the advanced ele­

ments of mtion corresponds to the real course of time (from the past to the future); 

the calculation with the retarded elements of motion corresponds to the negative 

course of time (from the future to the past). 

The intensities of radiation reaction do not.depend on the distance between the 

charge and the reference point, and, thus, they have mathematical sense also for the 

point where the charge itself is placed. So we are impelled to make the conclusion 

that the electric and magnetic intensities of radiation reaction act on the radia­

ting charge itself. Here we cannot speak about advanced and retarded moments, as 

both these moments coincide with the observation moment. 
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However, as formulas (34.38) show, the intensities Erea and Brea depend on the 

angle between the super-acceleration and the line connecting the charge with the re­

fer.ence point. Since the reference point for the radiation reaction is the radiating 

char!li: itself, we have to eliminate such an angular dependence by averaging over all 

di re cti ons . 

The averaging is to be performed in the fol lowing way: We plot the vectors of 

the intensities Erea obtained when the reference point covers densily a whole sphere 

around the charge, so that the angle between n and w takes all possible values. Now 

if we add geometrically all these vectors Ereai, i = 1,2, ..... N, whene N ... "', and if 

we divide the resultant vector by the number N, we shall find the average value (we 

write the intensity of radiation ~action calculated with the advanced elements of 

motion) 

( 34. 42) 

Multiplying both sides of this equation by 4n, we get 

-- N 4n 
4nErea = .l Ere a -N = fE rea dQ • 

l =1 l 4'1T 
(34.43) 

by making the transition N-+-"'• and thus 

__ 'IT 2n 'IT 211 
Erea = -

4
1 f f q nx~nxw) sine dec14> = _g__

3 
f J{(n.w)n - w}sine dedcp, (34.44) 

11 
0 0 C 4'l!·C O 0 

where nx = sin8coscf>,. ny = sin9sincf>, nz = cose, 9 and cf> being the zenith and azimuth 

angles of a spherical frame of reference with origin at the charge. 

Thus formula (34.44) can be written 

-- q TT 2,r 
Erea =_-- 3 f f{(wxsinecoscf> + wysin9sincf> + wzcos9)(sinecoscf>x + sinesincf>y + 

411c o o 
cosaz - w}sina d9dcf> 

q ,. TT 211 . 3 2 A TT 211 
_-- 3 wxx ff sin.ecos cpdedcp + w_y ff sin 3esin 2cpdedcp + 
4_11c o o r o o 

A 'IT 211 2 TT 211 
wzz f f cos e sine de def> - w / f sine de def>} 

0 0 0 0 

q ,.11_3 ,.11_3 ,.11 2 11 
- 3{wxx Jsm ede + w Y Jsm ede + w z f2cos esinede - w f2sinede} = 
4c o Y o z o 0 

( 34.45) 

The magnetic intensities of radiation reaction are the same when calculated with 

the help of the advanced and retarded eleirents of nntion. But the averaging of the 

magnetic intensity of radiation reaction over all angles gives· zero. Indeed, 
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__ l q ll 2ll 

B = - f B drl = - - f f """ sine de d$ = rea 411 4rr rea 411c3 0 0 

ll 2ll 

- ~ff {(wz sine sin$ - wycose)x + (wxcose - wz sinecos$)y +. 
4oc oo · 

(wy sine COS$ - wx sine sin$)z}sine de d$ = 0. (34.46) 

Thus formulas (J!l.38) are to be written in the form 

E = Epot + Erad + Erea = q ~ + q nx(nxu) - ls_ w 
r 2 c2 r 3c2 ' 

. nxv nxu 
8 =_ Bpot + B d = - q - - q -, 

ra cr2 c2r ( 34 .47) 

where we have taken these signs which correspond to the calculation with the advan­

ced elements of motion. 

35. ELECTROMAGNETIC POTENTIALS OF PERIODIC SYSTEMS 

Let us suppose that the charge and current densities of the considered system of 

electric charges are simple periodic (i.e., monoperiodic, or trigonometric) functions 

of time 

( 35.1) 

where Qmax and Jmax are the amplitudes of the charge and current densities and re­

present their values for times t = nT - (a/2rr)T, where n is an integer. 

The quantity Tis the PERIOD of the charge and current fluctuations; this is the 

time after whose expiration the charge and current densities obtain again the same 

values. The argument 2rrt/T + a of the trigonometric function is the PHASE and the 

quantity a is the initial phase which usually, when considering the charge and cur­

rent densities at a given space point only, can be taken equal to zero. The quantity 

w = 2rr/T is called (CIRCULAR) FREQUANCY and the quantity k = w/c = 2Jv'cT is called 

(CIRCULAR) WAVE NUMBER. Such an electromagnetic SYSTEM is called MONOPERIODIC. 

It is mathematically more convenient to write the real trigonometric relations as 

complex exponential relations. Thus we can present the expressions (35.1) in the 

form 
Q = Re{Q ei(wt +a)}= Re{Q e-i(wt +a)} 

max max ' 

J = Re{J ei(wt +a)} = Re{J e-i(wt +a)} 
max . max ' 

( 35. 2) 

where· Re{ } means that we must take only the real part of the complex expression in 

the braces. The real parts of both expressions (35.2) are equal but usually the se­

cond forms are used, i.e., those with the negative expon_ents. 
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If we introduce the notations 

( 35. 3) 

we can write (35.2), by omitting the sign Re{ }, in the form 

( 35. 4) 

where the new arrplitudes Ow, Jw must be considered as corrplex numbers which become 

real only under the condition a= 0. The corrplex forms (35.2) are called SHORT EX­

PONENTIAL FORMS and the corrplex forms (35.4) are called LAPIDARY EXPONENTIAL FORMS. 

The LONG EXPONENTIAL FORMS are the following 

( 35.5) 

where o!, J! are the quantities complex conjugated to Ow, Jw. 
The use of the complex exponential forms tums out to be very convenient when we 

perform linear operations (say, adding, differentiation, integration) over the tri­

gononetric functions. By using the corrplex exponential forms, all linear operations 

are to be applied not to trigononetric but to much sirrpler exponential expressions. 

However, when we have to perform non-linear operations (say, multiplication), we have 

always to use the long exponential forms. 

Let us find the electric and magnetic potentials originated by a monoperiodic sy­

stem at an arbitrary reference point. 

Following the concept that the potential electric and magnetic intensities appear 

"monentarily" in whole space, while the radiated intensities propagate with the velo­

city c, we shall pear in mind the following rules when calculating the intensities 

proceeding from the potentials: 

1) When we calculate the potential intensities, we have to use the observation 

potentials (refer to formula ( 34. 7) ). 

2) When we calculate the radiation intensities, we have to use the advanced po­

tentials (refer to formula (34.6). 

3) When we calculate both the potential and radiation intensities, we have to use 

the advanced potentials (see formulas (10.3)) 

<I> = f 0( t - R/ c) dV 
R • V 

A = / J( t - R/ c) dV 
R , 

V 
( 35.6) 

where R is the distance to the elementary volume dV, but in the final result we have 

to put c = 00 in all non-radiation intensities if this c appears as a result of mani­

pulation with advanced time. The execution of this program will ,becone clear in Sect. 

Sect. 37. 

Thus if the charge and current densities at every elementary volume of the consi­

dered system are sirrple periodic functions of time, with equal periods of fluctua­

tions, the electric and magnetic potentials will be also sirrple periodic functions 

of time with the same period and by putting (35.4) into (35.6) we obtain 
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A(t) = A e-iwt = J Jw e-i(wt -kR)dV, 
w V R 

where 

( 35 .8) 

are the corrplex amplitudes of the advanced electric and magnetic potentials. 

Let us now suppose that the charge and current densities are periodic, but not 

trigononetric, functions of time. As it is known, any periodic function can be pre­

sented as a Fourier series, i.e., as a superposition of trigononetric functions with 

different periods. We shall call such SYSTEMS POLYPERIODIC and their potentials will 

be superposition of potentials of IOOnoperiodic system;. 

If the charge and current densities are arbitrary functions of tine, then, as it 

is known, they can be presented by a Fourier integral as a superposition of monope­

riodic functions and such will .be also the potentials. We call such system; APERIO­

DIC. 

36. THE POTENTIALS AT LARGE DISTANCES FROM THE GENERATING SYSTEM 

Let us consider the potentials generated by an electromagietic system of arbitra­

rily rooving charges at large distances from the system, that is at distances which 

are large compared with the dinensions of the system. 

We choose (fig. 16) the origin O of the reference frane sonewhere in the inte_rior 

of the system of charges using the following notations: the radius vector of the re­

ference point Pis denoted by rand the unit vector along it by n; the radius vec­

tor of the charges in the differential volune dV around point Q (where the charge 

and current densities are Q(t) and J(t), respectively) is denoted by r'; the radius 

vector from the the volune dV to the reference point P is denoted by R. 

p 

y 

Fig. 16. Electromagnetic system and a far lying reference point. 
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Denoting by L the largest diJrension of the system, we shall assuJre 

r » L, 

and therefore 

r » r'. 

From fig. 16 we have R = r - r', and thus we can write approximately 

R = Ir - r'I = (r 2 - 2r.r'J 112 
= r(l- 2n.r'/r) 1/ 2 = r - n.r', 

and with larger inaccuracy 

R = r. 

( 36. 1) 

(36.2) 

( 36. 3) 

( 36. 4) 

In addition to the condition (36. 1) we shall soJretiJres assuJre also that the shor­

test period of oscillation T of the charge and current densities at the different 

eleJrentary voluJres of the system is much larger than the tiJre in which light covers 

the largest diJrension of the system, i.e., 

T » L/c. ( 36.5) 

Let us now consider the advanced magnetic potenti a 1 of a tronoperi odi c system. 

Substituting (36.3) into the second formula (35.8), we shall have at this approxima­

tion 

( 36.6) 

Taking into account assurrption (36.2), we can neglect n.r' with respect tor in the 

denominator. However, this condition is not enough to make the saJre neglection in 

the exponent of the nominator. Indeed, we have 

Re{eik(r -n.r' l1 = cos{~r -n.r')} = cos[211{rT - .!::.'.. cos(n.r' )}]. 
cT c_ cT· 

( 36. 7) 

Thus we can neglect in this expression (r'/cT)cos(n.r') only if r'/cT < L/cT « 1, 

i.e., if also condition (36.5) is fulfilled. 

Thus assuming that onl_y condition (36.1) is fulfilled but condition (36.5) is not, 

we can write (36.6) in the form 
ikR I 

A = _e_ J J e-n.r dV. (36.8) 
w er V w 

Assuming that both conditions (36.1) and (36.5) are fulfilled, we can write (36.6) 

in the form 
eikr 

A= -er J J dV. w V w 
(36.9) 

These results can be applied to the first formula (35.8) and then to the electromag­

netic potentials of polyperiodic and aperiodic systems. 

Let us consider now the advanced magnetic potential of an arbitrary system written 

in the general form (35.6). Substituting (36.3) into {35.6), we shall have 
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A = .! J J(t - r/c + n.r'/c) dV. 
Cy r-n.r' 

( 36.10) 

Assuming that only condition (36.1) is fulfilled but condition (36.5) is not, we can 

write 

A= c~ f J(t' + n.r'/c)dV, 
V 

{36.11) 

where t' = t -r/c is the colTlfll)n advanced roment for the whole system, i.e., the ad-

vanced moment taken with respect to the frame's origin. 

Expanding the integral in (36.11) as a power series of the small quantity n.r'/c, 

we obtain 

A= A(o) + A(l) + ..... = _!_ f J(t')dV + -
2
1 /(n.r')~ + ..... 

er V c r V dt' · 
( 36.12) 

Since n is a constant unit vector and the vectors r' _are integration variables which 

do not depend on time, we can write, taking into account that JdV is equal to the 

sum of the charges in the volume dV multiplied by their velocities 

1 n 1 d n ·, , 
A=- Iq.v.(t')+-

2
---, _lqi(n.ri)vi(t )+ ......... (36.13) 

er i = l 1 1 c r dt 1 = 1 

In zero approximation we have 
n 

A(o) = .!_ l q.v. 
er i =l 1 1 

( 36. 14) 

where dis the advanced dipole moment of the system, and the point over the synbol 

signifies that time derivative_is taken from this quantity. We remind that the ele­

ments of motion on the right side of the last formulas are taken at the co111110n ad­

vanced moment. 

37. POTENTIAL FIELD AND RADIATION FIELD 

We es tab 1i shed in Sect. 34 that the intensity field of an arbitrarily moving 

electric charge consists of two parts - potential part and radiation·part. As formu­

las (34.38) show, the potential electric and magnetic intensities are inversely pro­

portional to the second power of the distance from the charge producing them, while 

the radiation electric-and magnetic intensities are inversely proportional to the 

first power of this distance. Then we established that the potential electromagne­

tic intensities "appear", as the potentials, instantly in whole space, i.e., they 

are immaterial, while the radiation electromagnetic intensities "propagate" with the 

velocity of light from the charge producing them to infinity; thus we ha~~ identified 

the radiation field of the charge by the photons emitted by it. 

As the field of a system of arbitrarily moving charges represents a superposition 

of the field; of anyone of these charges, the co111110n intensity field of the whole sy­

stem will also consist of a potential part and a radiation part. 
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Let us nc,,i find the field of a system of charges at large distance from it. As 

rrentioned in Sect. 35, for the calculation of the potential and radiation intensities 

we use the advanced potentials but then in all non-radiation intensity terms we have 

to put. c ="'everywhere where this "c" appears as a result of manipulation with ad­

vanced tirre; non-radiation terms are all' those which are not inversely proportional 

to the first power of the distance from the system to the reference point. The es­

sence of this program will becorre clear in this section. 

For silllJlicity sake, we s·hall make a calculation for the potentials taken in zero 

approximation. Thus the advanced magnetic potential will be given by formula (36.14). 

The advanced electric potential can be calculated by substituting (36. 14) into the 

equation of potential connection (.B.8) 

div(a/cr) = - (l/c)a<1>/at. 

After integration we can determine the electric potenti~l 

<P = - di v ( d/ r) + Const , 

where the constant of integration must have the form 

1 n 
Const= r .l qi' 

1 =1 

( 37 .1) 

( 37. 2) 

( 37. 3) 

because if we put the dipole moment equal to zero, we shall have, at the assulllJtion 

(36.1), 
1 n 

<I> = - l q., 
r i =1 1 

where n is the nuntier of the charges in the system. 

( 37 .4) 

Let us assurre that the sum of all charges in the system is zero. Then the advan­

ced electric potential will have the form (37.2) with Const= 0. Putting this and 

(36.14) into the fundamental definition equalities (34.1), we obtain the following 

expressions for the electric and magnetic intensities .. 
E = grad(div~) - .!...~, 

- r c2 r (37.5) 

Now I shall calculate the roonoperiodic alllJlitudes of the electric and magnetic 

intensities, assuming that the charge densities are roonoperiodic functions of time; 

if they are polyperiodic or aperiodic functions of time, then we shall assume that 

a suitable expansion in a Fouruer series or Fourier integral is performed. 

The resultant advanced dipole morrent of the system can be presented as a superpo­

sition of the advanced roonoperiodic rooments of the form 

d(t') = d e-iwt' = d e-iw(t -r/c) = d e-iwt +ik_ 
w w w 

(37 .6) 

We see that the velocity "c" which figures in the advanced time is included in the 

wave nuntier k; hence in all non-radiation intensity terms of the final reslt we have 

to put k = 0. 
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The e 1 ect ri c and magnetic i ntens i ti es produced by this monope ri odi c di po 1 e rroment 

will also be periodic functions with the same frequency 

E(t) = Ewe-iwt, B(t) = Bwe-iwt. (37.7) 

Substituting (37.6) and (37.7) int-o the first equation (37.5) and dividing the 

equation obtained by the comrron factor exp(-iwt), we obtain for the· rronoperiodic am­

plitude of the electric intensity with frequency w the following expression 

ikr 2 eikr ikr 2 
Ew = grad{div(~ dw)} + : 2 -r- dw = grad{dw.gra~) + ~ eikr dw 

i kr k2 . k . k 1 . k k2 
(d .grad)gracJ!.- + - e1 rd = (d .grad){(.!_ - -)e 1 r r} + - eikr d 

w r r w w r2 r3 r w 

(.!!. _ ..!.)eikr d + i eikr d = 
r2 r3 . w r w 

(37.8) 

The amplitude of the radiation electric intensity is the one which is inversely 

proportional to the first power of r; thus we can write 

E = k2 ikr x(d xn). 
wrad r e " w (37.9) 

In all other terms we have to put k = 0 and these terms which remain wi 11 represent 

the a1T4Jlitude of the potential electric intensity. Thus we shall have 

(37.10) 

I showed (see (31.12)) that this is the electric intensity generated by a static 

electric system with a total charge equal to zero and dipole rroment (31.6) different 

from zero. The difference from the static system is only this that in the general 

dynamic monoperiodic case-the potential electric intensity, according to formula 

(37. 7) is a monoperiodic function of tilll!. 

The second term on the right side of (37.8) appears only as a result _of the com­

putation and when putting k = 0 disappears, i.e., it has no physical meaning. 

Which are the errors of conventional physics which assumes that the interaction 

"propagates" with the velocity c? First it hi;is to consider the second term on the 

right side of (37.8) as a real electric intensity. However nobody has measured such 

an intensity. Second, conventional physics considers the third term on the right 

side of (37.8) together with the factor eikr, i.e., it assumes that the potential 
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electric intensity of a monoperiodic system has a "wave character". It is extremely 

easy to show experimentally that this assertion is not true, as I shall show beneath. 

Let us now see which are the radiation and potential magnetic intensities of a 

system.with monoperiodic dipole moment different from zero. Substituting (37.6) and 

(37.7) into the second equation (37.5) and divinding the equation obtained by the 

common factor exp(-iwt), we obtain for the monoperiodic amplitude of the magnetic 

intensity with frequency w the following expression 

eikr . ikr 
B = - i ~ rot(-- d ) = i ~ d xgra~ = w C r Ul C Ul r 

- .!C_ e i kr d xn - ~ e i kr d xn. 
r w cr2 w 

( 37 .11) 

The amplitude of the radiation magnetic intensity is the one which is inversely· 

proportional to the first power of r; thus we can write 

B = k2 e i kr xd 
wrad r n w ( 37 .12) 

In the other term representing the amplitude of the potential magnetic intensity 

we have to put k = O; so we obtain 

Bwpot = :~ nxdw. ( 37. 13) 

Having in mind (J7. 7) and (37. ll.)., we-can write the time depending potential mag­

netic intensity corresponding to the frequency w in the form 

B (t) = ~ nxd e-iwt = - ~xj_(d e-iwt) = - ~xd(t). 
pot cr2 w cr2 dt w cr2 

( 37. 14) 

Using now formula (36.14), we get 

B t(t) = - !!.xA(t) = - !!.xf®dv = f J(t)x
2
ndV. 

po r r V c r V er 
(37.15) 

Canceling the common factor exp(-iwt), we obtain for the amplitude of the potential 

magnetic intensity 

B - ~ J111xn dV 
wpot - 2 · er 

( 37 .16) 

This is the magnetic potential of a stationary (quasi-static) system of electric 

charges, as it can be immediately shown taking rotation from A= fJdV/cr. 

The radiation electric and magnetic intensities (37.9) and (37.12) can be imme­

diately obtained from formulas (34.35), which we can write in the form 

Erad = nx(nxA/c), Brad = - nxA/c, ( 37. 17) 

in which form they are valid if A is the advanc~d magnetic potential not only of a 

single charge but of a whole system. Indeed, if we put here (36.14), using (37.6) 
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and(37.7), we easily obtain (37.9) and (37.12). 

As said above, conventional physics has to consider the last terms on the right 

sides of equations (37.8) and (37.11) together with the factor exp{ikr). This will 

giv~ to the potential electric and magnetic intensities a "wave character". A very 

easy experinent showing that this is not true, i.e., that the potential electromag­

netic intensities have no "wave character" is the following-one: Take two big coils 

set aside at a certain distance Land feeded by strong currents with the~ high 

enough frequency, so that c/w < L/211. Take another small coil closed shortly by an 

a1Tpereneter in which current will be induced and so it will serve as an .indicator 

of the potential electric field produced by the big coils.If rroving the indicator 

coil between both powerful coils, we shall see that the induced current is the lar­

gest when the small coil is near the one or the other coil and gradually decreases, 

being the less at the middle point. If the potential magnetic field would have a 

"wave character", the induced current will not decrease gradually at the above mo­

tion of the small coil, as both potential fields will interfere and the indicator 

has to show "nodes" and "anti-nodes" of the produced "standing ·waves". Nobody no­

where has observed such an effect. This effect, however, can be very easily observed 

exactly in the above way for the radiation electromagnetic field of two antennas. 

Now the big question is to be posed, how can we, by neasuring a certain electric 

intensity E and a certain magnetic intensity B, discern which is po ten ti a 1 and which 

is radiation (or which parts in E and B have potential and which radiation charac­

ter). This is a very i1Tportant question to which official physics cannot give a ·clear 

answer. 

The distinction which I make is the following: E and B are radiation elecric and 

magnetic intensities if and only if they are produced by the sane charges, have equal 

magnitudes, are mutually perpendicular, and the vector ExB points away from the sys­

tem producing them. Note that the requi renent "produced by the sane charges" is very 

i1Tportant. So if we have a parallel plates condenser producing the electric intensi­

ty E and a cylindrical current coil whose axis is perpendicular to E producing a 

magnetic intensity B such that 8 = E, then the requirenent of calling them radiation 

electromagnetic intensities are fulfilled except the requirenent to be produced by 

the sane charges. Thus these electric and magnetic intensities are potential. 

The requi renent "produced by the sane charges" in the above definition can be 

replaced_by the following one: On a unH surface placed perpendicularly to the vec­

tor ExB, a pressure must act equal to the pressure which a gas with mass density 

µ = E
2
/411c rroving with velocity 1 cm/sec exerts on a wall placed perpendicularly to 

its flow. Thus the radiation electric and magnetic intensities must transfer energy 
(mass). 

I sketched in fig. 17 another experinent which can derronstrate the substantial 

difference between potential and radiation intensities. 

Let us have an oscillating circuit consisting of an induction coil L, a conden-
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Fig. 17. Experiment deroonstrating the romentary propagation of the 
potential magnetic intensity. 

ser C and a generator G which maintains undamped electromagnetic oscillations of the 

circuit. As it is known, the period of oscillations and the circular frequency are 

given by the formulas (see Sect. 54.2) 

T = 2n(LC) 112• w = 211/T = (Lcf 112. (37.18) 

Let us suppose that the condenser and the generator are enclosed in a screen-box 

S, so that this oscillating circuit cannot radiate electromagnetic waves into free 

space, where only its potential magnetic field will exist. 

Let us put another induction coil L' at a distance R from the coil L. If coil L 

is long enough, we can assurre that its potential magnetic intensity will be concen­

trated in the coil pointing along its axis and having the value B = (411nl/c)cos(wt), 

where n is the nunber of the windings on a unit of length and I is the amplitude of 

the alternating current flowing in the windings (see formula (18.28)). The magnetic 

potential of Lat the space domain where L' is placed is A= (211n1r2;cR)cos(wt), 

where r is the radius of the coil L. The magnetic potential A is tangential to a cy­

linder with raduis R having the same axis as the axis of coil L. According to the 

first formula (34.1), the electric intensity generated by the alternating current 

in Lat the domain where L' is placed will be also tangential to the mentioned cy­

linder with radius R ·and have the magnitude E ;= (211nir2w/cR)sin(wt). As in the win­

dings' halves of L' which are nearer to L the induced electric intensity will be 

bigger than in the halves which are farther, a resultant sinusoidal tension will be 

induced in L'. This tension, however, is small (if L is infinitely long, it disap­

pears), and it is better to make L' with a radius R encircling L. 

Let now suppose that the condition 
R > cT ( 37. 19) 



- 135 -

is fulfilled. According to official physics, for the time of one period of the os-

cillations the field of the magnetic potential propagating from coil L 

to coil L' cannot reach the latter. But, on the other hand, we know that at the be­

ginning and the end of every half period the whole electromagnetic energy of the 

circuit is concentrated in the electric field of the condenser C (suppose for sim­

plicity sake that the circuit L-C is without losses which, as a matter of fact, are 

covered by the energy coming from the generator G). Thus we have to conclude that 

under the condition (37.19) no electromagnetic energy can be transferred from the 

circuit L-C to the coil L'. 

According to nr; primitive and childish concepts, the potential electric and mag­

netic fields do not "propagate" with velocity c but "appear" instantly in whole 

space. Thus even at the condition (37.19) electromagnetic energy will be transferred 

from the circuit L-C to the circuit of coil L', and the amperemeter will show the 

existence of induction current. As the field in the outer space is potential, at 

open circuit of L' no energy will be absorbed from the potential field and the ge­

nerator G will cover only the inevitable losses in the circuit L-C. However, if the 

ciruit of L' will be closed, induced current ·will flow in it, energy will be absor­

bed and, because of the back induction of L' in L, the generator must increase its 

power, otherwise the energy consumed by L' will damp the oscillations in the L-C 

circuit. 

Let us now put the screen box S away and let us begin to make the distance be­

tween the condenser·•s plates bigger and bigger, until the whole circuit will become 

a straight line with a condenser's plate at any of its ends and the coil Lin the 

middle. If the coil will remain further very long and having the whole magnetic 

field inside, this system will again have only potential fields in the outer space 

and both fields (of the condenser and of the coil) will be electric. If, however, 

we shall begin to diminish the windings of the coil reducing it at the end to a 

straight wire, in the outer space will exist both the electric and magnetic inten­

sities of the L-C circuit. The parts of them which will be with equal magnitudes, 

which will be mutually perpendicular and for which the product E><B will point away 

from the system will be their radiation electric and magnetic intensities. The coil 

L' will react both to the potential and radiation electric and magnetic intensities 

and current generated by their comnDn action will flow in L'. 

Here .it is to be mentioned that if the predominant part of the energy absorbed 

by L' will have a radiation character, then the fact whether L' is closed (absorbs 

energy) or open ( does not absorb energy) has !!.2_ influence on the generator G which 

covers only the inevitable losses in the circuit and the energy radiatedbin the 

form of electromagnetic waves (photons). 

All these experiments are enough simple for execution and their explanation is 

also extremely simple. Nevertheless official physics defends the wrong _concept that 

also the potential electric and magnetic intensities, and even the electric and mag-
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netic potentials, "propagate" with the velocity of light. 

At the end of this section I should like to emphasize once more that the potential 

electric and magnetic intensities are determined by the values of the charge and cur­

rent densities at the different elenentary volumes of the system, while the radiation 

electric and magnetic intensities are determined by the rate of change of these den­

sities. 

38. DIPOLE RADIATION 

In zero approximation at large distances from the generating system the magnetic 

potential can be expressed by the dipole morrent of the system according to formula 

(26.14). Substituting this expression for the advanced magnetic potential into the 

general formula (37.17) for the radiated electric and magnetic intensities, we obtain 

1 .. 
Erad = er nx(nxd), 1 a .. Brad = -2- _xn. 

C r 
(38.1) 

The radiation described by the formulas (38.1) is called DIPOLE RADIATION because 

the electric and magnetic radiation intensities depend only on the dipole morrent of 

the system (on its second ti me derivative). 

As already said, the radiated electromagnetic waves (photons) are carrytngaway 

a definite arrount of energy from the radiating system. The intensity of the radia­

ted energy flux is given by formula (34.39). Taking into account the relations (see 

formulas (34.35)) Brad= nxErad' Erad.n = 0, Erad = Brad' we can write 

(38.2) 

Taking into account our third axiom, we have to understand the above equation 

always in the foll™ing form 
c T/2 2 c T/2 2 

I = T J (Erai4TT)dt = T J (Brai4TT)dt, (38.3) 
-T/2 . -T/2 

where T is the period of the electromagnetic wave (the period of the photon). Indeed, 

according to the third axiom, only when tirre equal to the period of a particle has 

elapsed can we affirm that the particle has crossed a given surface. For times shor­

ter than the period we cannot say on which side of the surface is the particle. 

It is more convenient to express I by Brad (see the rigit-hand expression in 

(38.2)) as Brad can be expressed by d nore simply than Erad (see (38.1)). 

The energy flux of radiation dP in a unit of tine into the elenent of a solid 

angle drl is defined as the amount of energy passing in a unit of tine through the 

elenent dS = r2dn of the spherical surface with center at the frane's origin and 

radius r (see fig. 16). This quantity is clearly equal to the intensity of the ener­

gy flux density I multiplied by dS, so that using (38.1) we obtain 

dP = ldS = (c/4TT)B2r2rln = (l/4TTc3)(nxd}2dn. (38.4) 
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The whole energy flux can be obtained if we integrate (38.4) over a sphere con­

taining the radiating system at its center. Let us introduce spherical frame of re­

ference with polar•~xis along the vector d. Let the zenith angle and the azimuth 

ang_le of the unit vector n be e and <f>; e is consequently the angle between d and n. 
As dQ = s i ne dB d<f> • 

.. 2 TT 211 ••2 
P = /~ dQ = f f _d_ sin 3e d8d<f> = - 2- ,i2. 

411 411c3 o o 411c3 3c3 
(38.5) 

-
If we have just one charge moving in an external field, we shall have, keeping 

in mind (31.6), i:i =qr= qu, so that the total energy radiated in a unit of time by 

this charge will be 
.?.9.:. 2 p = u • 
3c2 

(38.6) 

We note that a system of particles, for which the ratio of charge to mass is the 

same, cannot radiate (by dipole radiation). Indeed, for such a system 

n n n 
d = l (q./m.)m.r. = Const l m.r. = Const R Im-, 

i =l l l l l i =~ l l i =l l 
(38. 7) 

where Const is the charge-to-mass ratio common for all charges and R is the radius 

vector of the center of mass of the system. As the center of mass moves uniformly, 

its acceleration is zero and consequently the second time derivative of dis zero, 

too. 

If the particle performs such a motion that its dipole moment is a sirrple perio­

dic function of time with a period T = 211/w, we shall have 

d( t ) = d e - i wt, 
w 

( 38. 8) 

where dw is the corrplex arrplitude of the dipole moment (which, at a suitable choice 

of the initial moment, can be taken real and equal to the maximum value of the di­

pole moment - see Sect. 35). 

Hence, subs ti tuti ng ( 38. 8) into ( 38. 5), we obtain for the total energy flux 

( 38.9) 

39. RADIATION REACTION 

As formulas (34.47) show, the radiation reaction electric and magnetic intensi­

ties are as follows 
3 

Erea = - (2q/3c )w, 
I) 

( 39. 1) 

Let us calculate the change of the energy of a system of n charges due only to 

the action of the electric intensities of radiation reaction Ereai of the various 

charges. On each charge of the system the "kinetic" force 
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2 2 f. = q. E = - (2q
1
./3c )w

1
., 

1 1 reai 1,2 , ... ,n (39.2) 

will act, called RADIATION REACTION FORCE (or radiating damping force, or LORENTZ 

FRICTI_ON FORCE). The power of these forces acting on all charges of the system, i.e., 

the work done by the radiation reaction ·forces in a unit of time, is (see formula 

( 8. 7)) 

Substititing here (39.2), we get 

2 n 2 
P = - - }: q · wi · v. 

3c3 i =I 1 1 

n 
P = }: t .. v .. 

i =1 1 1 
(39. 3) 

( 39 .4) 

Let us average this equation over time. At the averaging the first term on the 

right side will vanish as a total time derivative of a bounded function. Thus the 

average work performed in a unit of time by the darrping· force will be 

n 
P = _2_ }: q~u? = _2_ ct2, 

3c3 i = 1 1 1 3c3 
( 39.5) 

where d is the dipole rroment of the whole system of charges. 

Corrparing this formula with formula (38.5), we conclude that the average work 

done in a unit of time by the radiation reaction forces over the charge (i.e., the 

power of the radiation reaction) is just equal to the total energy flux of radiation 

(i.e., to the power of radiation). This conclusion gives a firm ground to consider 

the radiation reaction as an energetic balance to the radiated by the charges energy 

in the form of electromagnetic waves (photons). 

In a frame of reference in which the velocity of the particle is low, the equation 

of rrotion, when we include the radiation reaction, has the form (see equation (8.5)) 

mu= qE + (q/c)vxB + (q/c)Sv + (2q2/3c 3)w, (39.6) 

where the first three terms on the right side represent the potential electronegne­

tic force of the external field and the last term represents the radiation reaction 

force. This radiation reaction force has the character of "kinetic" force and must 

be written on the left side of the equation of motion (8.3), so that on the right 

side of equation (39.6) it figures with opposite sign. 

The charge can obtain an acceleration only when an external potential force acts 

on it. The accelerated charge will radiate photons and the radiation reaction will 

diminish its acceleration. Therefore the change (positive or negative) of the poten­

tial energy which the charge has with the external system will lead to a change in 

the kinetic energy of the charge (respectively, negative or·positive) but will also 

lead to radiation; this radiation must always be considered as a positive change 

because the radiated photons have zero potential energy with the external system 

and carry away only energy. Therefore radiation damping can exist only when the 
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charge moves in an external field and the radiation reaction force (at v « c)is 

always snall with respect to the potential electromagnetic force. 

If we take time derivative from equation {39.6), then, neglecting the Whittaker 

force and the term with the super-super-acceleration w as small, we can write the 

super- acce l era ti on in the fo 11 owing form 

w = (q/m)E + (q/mc)uxB. ( 39. 7) 

Let us consider now the motion of the radiating charge in a frame in which it is 

at rest, i.e., where v = 0. Now neglecting the radiation reaction force with respect 

to the potential electromagnetic force, we can write equation (39.6) in this frame 

as fol lows 
u = (q/m)E. (39 .8) 

Substituting (39.8) into (39.7), we obtain (in the particular frame in which we now 

work there is v = 0, but u F O, w F 0) 

. w = (q/m)E + {q2tm2c)ExB. (39 .9) 

Thus after the substitution of (39.9) into (39.2), the radiation reaction force can 

be expressed by the external electric and nagnetic intensities as follows 

f = - (2q3/3mc3)E - (2q413m2c4 )ExB. (39.10) 

In Ref. 5 I give the fundamental formulas for the radiation of polyperiodic and 

aperiodic systems and I consider the higher than zero approximations which lead to 

quadrupole and magnetic dipole radiations. Then I consider the effects which appe.ar 

when the velocity of the radiating charge is comparable with light vel_ocity and I 

give the most detailed ca lcula ti ons of the synchrotron radiation. I analyze al so the 

the radiation damping at v .. c when the radiation reaction force acting on the radi­

ating charge can become larger than the potential electromagnetic force acting on it. 

One can make all these high-velocity considerations only by the use of the Lorentz 

invariance (see the end of Sect. 1). 

40. GRAVIMAGRETIC WAVES 

MY mathematical apparatus in electromagnetism and gravimagretism are almost iden­

tical. Thus if taking into account the fundamental Newton-Marinov equation (7.11), 

by analogy with the electric and magnetic intensities (34.24) and (34.25), we can 

introduce the gravitational and magretic intensities produced by an arbitrarily mo­

ving mass m 

G = _ ym (l-v"
2
tc

2
)(n' -v'/c) mo n'x{(n' -v'/c)xu'} mo il (40.1) 

2 - Y- -~---'--'-----,.a.. - y- n'x(n'xw ), 
0 r' (1-n' .v'/c) 3 c2 r'(l - n' .v'/c) 3 c3 

B Y
mo (l-v 12;c 2)n'xv' mo n'x[n'x{(n' -v'/c)xu'}] m -=----~-~ -Y- --=--.a..,...-_ __..;._~.,__...;:_-'-"' + y __Q n 'xw' 
c r" 2(1-n'.v'/c) 3 c2 r'(l-n'.v'/c) 3 , c3 • 

(40.2) 
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where y is the gravitational constant, m
0 

is the proper mass of the particle and v', 

u', w' are its velocity, acceleration and super-acceleration at the advanced roorrent 

t' = t - r'/c, t being the observation roorrent and r' the advanced distance. 

The_ calculation of G and B can also be done with the retarded elerrents of rootion, 

according to formulas analogical to.(34.26) and {34.27). 

I attribute the first terms in the above equations to the potential gravimagretic 

intensities, Gpot, Bpot• the second terms to the radiation gravimagretic intensities, 

Grad• Brad• and the third terms to the radiation reaction gravimagretic intensities 

Grea• Brea• I call the radiation gravimagretic field also gravimagretic waves. By. 

analogy with the photons, we can introduce the gravitons as quanta of gravimagretic 

radiation. 

The GRAVIMAGRETIC WAVES are extrerrely feeble and I am sceptical whether their 

existence can be detected at the present state of experirrental technique. As an 

example I shall calculate the gravitation radiation intensity produced by a mass 

m = 9 g, performing oscillations with an acceleration u = 106 cm/sec (such is the 

acceleration of a steel ball falling from 1 m, if after the fall it must make reper­

cussions between two steel surfaces, the distance between which is a little bit big­

ger than the diarreter of the ball), at a distance r = 6.67 cm. Usirig formula (40.1) 

at the condition v « c; we obtain for the intensity along the direction of maximum 

radiation 

G = ymu/c2r = 10-22 cm/sec 2 . (40.3) 

This is such a feeble gravitational intensity that there are no rrethods for its de­

tection. 
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V. SYSTEMS OF UNITS 

41. NATURAL SYSTEMS OF UNITS 

A SYSTEM OF UNITS of a science, where the logical apparatus of mathematics is used, 

represents the totality of the measuring standards (units of measurement) of all fun­

damental (non-definable) and derivative (definable) quantities which are common in 

this science. 

A MEASURING STANDARD (UNIT OF MEASUREMENT) of a given quantity is such an element, 

chosen on the grounds of some consi derati ens, which has the same character as the 

quantity to be measured, i.e., the difference between any particular representative 

of this quantity and its measuring s.tandard can only be quantitative. 

As it follows from l11Y axioms, in physics only three non-definable quantities have 

been introduced: space, time and energy. I showed that all other physical quantities 

can be defined by the help of these three. 

The three measuring standards for the fundamental physical quantities can be cho­

sen arbitrarily on the grounds of some stipulation. The system of units used by the 

terrestrial inhabitants, where attributes of the Earth's dimensions and motion are 

used, cannot be introduced by the inhabitants of other planets. But in nature there 

exist standards representing universal constants, which can be chosen as measuring 

standards for the three fundamental quantities, say: 

a) the wavelength of a certain spectral line, 

b) the half-life of a' certain isotope, 

c) the value of a certain energetic quantu~. 

It is expedient to construct systems of units making use of such universal stan­

dards for the fundamental physical quantities. However, the choice of "universal" 

standards is to a great extent arbitrary. Such systems of units were proposed by 

Planck, Hartree and others. 

In 11JY axioms I postulated the existence of four universal constants that repre-

sent four fundamental measuring standards: 

a) velocity of light, 

b) Planck constant, 

c) electron mass, 

d) electron charge. 

It is logical to build our system of units on the basis of these qualitatively 

different natural standards which are introduced in the axiom directly. As a matter 

of fact, all these standards have not the character of fundamental physical quanti­

ties, length, time and energy, as they are derivative, but it is easy to (~xpress the 

quantities velocity, action, mass and electric charge by the three fundamental quan­

tities. 

The unit of measurement E, T, L, i.e., the measuring s·tandards for energy, time 
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and length, are determined by the relations (2.5), (2.4) and (2.1), which rewrite 

here in the form 

E=e=mc 2 , T=h/E=h/mc 2 , L=cT=h/mc. (41.1) 

The- first of these equalities must be understood as a synbolical one, i.e., if we 

choose the nunber m expressing the universal mass of a certain particle arbitrarily, 

then its universal energy e will have mc2 energy units, and vice versa, if we choose 

the nunber e expressing the universal energy of a certain particle, then its univer­

sal mass will have e/ c2 mass ·units. 

Thus, if we take m = me = 1, c = 1, h = 1, the measuring standards for energy, 

time and length are determined, namely, the energy unit will be equal to the univer­

sal energy of the electron 

the time unit will be equal to the universal period of _the electron 

2 
'e = h/ee = h/mec , 

( 41.2) 

(41. 3) 

and the length unit will be equal to the universal wavelength of the electron (see 

(2.8)) 
(41.4) 

When the units for energy and length are established, the gravitational constant 

is to be established by measuring the gravitational energy of two electrons, the 

distance between which is equal to unity (see formula (2.9)). Analogically, the elec­

tric constant is to be determined by measuring the electric energy of two electrons, 

the distance between which is equal to unity (see formula (2.11)). 

We must note that the electron mass does not represent a universal constant of 

such a fundamental ilJl)ortance as the electron charge, because all elementary parti­

cles have electric charges equal to qe, - qe or O (see axiom V), while their masses 

are largely different. From an axiomatical point of view, we can choose the mass of 

the proton or of another elementary particle as a fourth neasuring standard; as it 

is not possible to decicewhich elementary particle is the most ilJl)ortant in nature. 

In general, any system of units in which the units of measurement for the fundamen­

tal (and thus for all derivative) physical quantities can be expressed with the help 

of some NATURAL STANDARDS (or of their collbination) is called a NATURAL SYSTEM OF 

UNITS. 

42. THE NATURAL SYSTEM OF UNITS CES. THE GAUSS SYSTEM OF UNITS CGS 

call the system of units in which the numerical values for c, h, me (or y) and 

qe (or e:0 ) are chosen equal to unity the NATURAL SYSTEM OF UNITS CES. The following 

four types of natural systems of units CES are possible (see the fourth and fifth 

axioms): 

1. When y = 1, m! = 2. 78xl0- 46 , the system is of type y. 



- 143 -

2. When me 1, y = 2.78 10-46 , the system is of type Ille· 
3. When e:0 1, q~ = 1/861, the system if of type e:0 • 

4. When qe = 1, e:0 = 861, the system is of type qe. 

_From these four systems CES-ye:0 , CES-mee:0 , CES-yqe and CES-meqe I shall only use 

the system CES-11e--o which I shall shortly call NATURAL SYSTEM OF UNITS CES. 

Thus the numerical values of the universal constants in the system CES (i.e., in 

the system CES-11e E"o) are 

c = 1, h = 1, ~ -2 qe = 3.41 10 . 

( 42.1) 

The values of y and qe (or of e:0 if we put qe = 1) are not exact because only the 

experiment can say what part of the energetic unit represents the gravitational 

energy, respectively, the electric energy of two electrons separated by a unit dis­

tance. The experiment continuously increases the accuracy with which these two con­

stants can be measured, and therefore the numerical values which we ascribe toy and 

qe (i.e., e:0 ) will always be approximate. 

The units qf measurement for the fundamental physical quantities in the natural 

system CES are called: 

a) the unit of length - NATURAL CENTIMETER, 

b) the unit of energy - NATURAL ERG, 

c) the unit of tim -.NATURAL SECOND. 

The GAUSS SYSTEM OF UNITS CGS is this one in which the numerical values for c, h, 

y, me, e:
0

, qe are chosen as follows 

C (2.997925 ± 0.000003)xlOlO, 

h (6.62517 ± 0.00023)x10- 27 , 

y (6.670 ± 0.007)xl0- 8 

me (9.1083 ± 0;0003)x10- 28 

e:o 1, 

qe (4.80298 ± 0.00009)xlO-lO. (42.2) 

Here we can say the same as for the figures (42.1). But here we must add the fol­

lowing: In the system CGS first the units for length, time and mass (energy) are de­

termined, and then, on. the grounds o·f these arbitrarily chosen uni ts, the numerical 

values of the universal constants are calculated. This has led to the result that 

the universal constants cannot be expressed with such simple and exact nunters as 

in the system CES. The value of these constants will vary with time, because, first, 

the standards for the fundamental units can vary (although in the last yi~rs mankind 

has firmly chosen these standards and, probably, will not change them in the fu­

ture) and, second, the accuracy with which the constants can be measured increases 

incessantly. For the inexactitude of the universal constants in the system CES only 
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the second cause is valid, and in this system four of the constants (c, h, file, £o) 

do not change in time at all. In the system CGS only one constant (£0 ) does not 

change in time. But in the system CGS the standards for the fundamental unit of 

measur~ment (say, the wavelength of a certain particle, its mass and its period), 

being once firmly chosen for good, do not change in time (i.e., all these standards 

will alwc1ys be expressed by the s·ame number), while in the system CES the standards 

for the fundamental units of measurement will change in time (i.e., the numbers with 

which these standards are expressed will vary in time). 

Thus in both systems of units five elements suffer changes: in the system CGS 

those are the constants c, h, y, me, qe, while in the system CES those are the con­

stants y, qe and the standards with which the units for length (L), time (T) and 

energy (E) are materialized. 

The uni ts of measurement for the fundamenta 1 physical q uanti ti es in the Gauss sy­

stem CGS, called GAUSS UNITS OF MEASUREMENT, are: 

a) the unit of length - CENTIMETER, 

•b) the unit of energy (mass) - ERG (GRAM), 

c) the unit of time - SECOND. 

We can establish the numerical relations between the units of measurement for the 

fundamental physical quantities in the systems CES and CGS as follows: 

1. To find the relation between the units for energy, we calculate according to 

formula (2.5) with how many energetic units the universal energy of the electron is 

expressed in the systems CES and CGS 

= m c2 = 1 nat.erg, ee e _ (42.3) 

Thus 

1 nat. erg = 8.19xl0- 7 erg. ( 72.4) 

2. To find the relation between the units for time, we write formula (2.4) in the 

sys terns CES and CGS 

h = ET. 

Dividing the first of these equalities by the second, we obtain 

Tn = hnET/hEn, 

and using ( 42. 1) , ( 42. 2) and ( 42 .4) , we get 

1 nat. second= 8.09xl0- 21 second 

(42.5) 

(42.6) 

(42. 7) 

3. To find the relation between the units for length, we write formula (2.1) in 

the systems CES and CGS 

L = cT. 

Dividing the first of these equalities by the second, we obtain 

Ln = cnTn/cT, 

(42.8) 

(42 .9) 



- 145 -

and using (42.1), (42.2) and (42. 7), we get 

l nat. centimeter = 2.4JxlO-lO centimeter. (42.10) 

If the relations (42.4), (42.7) and (42.10) between the units for the fundamental 

physical quantities are given as well as the numerical values of the universal con­

stants in one of the system, we ca.n find the values of the universal constants in 

the other system. 

Let find the numerical values of the universal constants in the system CGS if 

the mentioned relations and the values of the universal constants in the system CES 

are given: 

1. The numerical value if c can be found using formulas (2.1), (42.7) and (42.10). 

2. The numerical value of h can be found using formulas (2.4), (42.4) and (42. 7). 

3. The numerical value of "1e can be found using formulas (2.5), (42.4) and the 

numerical values of c in the systems CES and CGS. 

· 4. The numerical value of y can be found writing formula (2.9) in the form 

- 2 E - ym/L, (42.11) 

using formulas (42.4.), (42.10), the numerical values of "1e in the systems CES and 

CGS and the numerical value of yin the system CES. 

5_. The numerical value of qe can be found writing formula (2.11) in the form 

2 E = q/e:
0

L, (42.12) 

using formulas (42.47l (42.10), the numerical value of qe in the system CES and cho­

osing the electric constant in the system CGS equal to unity, as it is also in the 

system CES. 

Theoretically it is more expedient to choose the unit for energy as fundamental 

unit in the Gauss system and not the unit for mass, as it is conroonly accepted. Ta­

king into account (2.5), we conclude that both these approaches are alnost identical.. 

In the future, in principle, we shall not make difference between the Gauss systems 

"centimeter - gram - second" and "centimeter - erg - second". If necessary, we shall 

denote the first CGS-gr and the second CGS-erg. 

We shall call the units of measurement in the system CES by the same.names as in 

the Gauss system CGS, but when speaking we shall pronounce · the word "natural" be­

fore the respective term, and when writing, as a rule, we shall omit the word "na­

tural" but noting the respective term with a capital letter. For concise writings of 

the names of the three fundamental units of measurement we shall also use only the 

letters Cm, E, S. Thus relations (42.4), (42.7) and (42.10) between the units of 

measurement for the fundamental physical quantities in systems CES and 4GS can be 

written as fo 11 ows: 

1 natural centimeter= 1 Cm= 1 Cm= 2.43xlO-lO cm, 

1 natural erg 1 Erg= 1 E = 8.19xl0- 7 erg. 
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CES: natural 

Di irensi ons 

CGS CES 

Table42.l 

Conversion factor 
1 unit CES = 
.... units CGS 

------·-----------------------------------------------------------------------------

Length 

Energy 

Time 

Area 

Volume 

Angle 

r = r 

e = e 

t = t 

s = r2 

V = r3 

e = e 

FUNDAMENTAL UNITS 

centimeter 

erg 

cm Cm 

second 

cm2 

cm3 

radian 

2 -2 g cm s E(rg) 

s(ec) 

AUXILIARY UNITS 

cm2 

cm3 

S(ec) 

cm2 
Cm3 

Frequency v = 1/t hertz 

MECHANICAL UNITS 

s-1 s-1 

Velocity v = dr/dt ces 

Acceleration u = dv/dt gal 

Super-acceler. w = du/dt supergal 

Angul.velocity o = de/d~. ras 

Mass m = e/c 2 

Mass density µ = dm/dV 

Energy density £ = de/dV 

Energy flux P = de/dt 

Energy fl. dens. 1 = £V 

Space momentum 

Time momentum 

Force 

Power 

p = de/dv 

ii= e/c 

f = dp/dt 
...... 

P = f.v 

Angul. momentum t = pxr 
Action S = et 

Inertial moment J = m r2 

Force moment M = rxf 

gram 

gram/cm3 

erg/cm3 

erg/sec 

erg/cm2sec 

erg/ces 

erg/ces 

dyne 

erg/sec 

ergsec 

ergsec 

gram cm2 

dyne cm 

cm s- 1 

cm s- 2 

cm s-3 

s-1 

g 

g cm-3 

Cm S-l 

cm s-2 

Cm S-J 

s-1 

E cm-2 s2 

E cm-5 s2 

g cm-l s- 2 E Cm-3 

g cm2 s- 3 E s-1 

g s- 3 E Cm-2 s-l 

g cm s-l E Cm-1 S 

g cm s- 1 E Cm-1 S 

g cm s-2 E Cm-l 

g cm2 s- 3 E s-1 

· g cm2 s-l E S 

g cm2 ·s-l ES 

g cm2 • E s2 

g cm2s-2 E 

2.43xl0-lO 

8.19xl0- 7 

8.09xl0- 21 

5.90xl0- 20 

l.43xl0- 29 

1 

l.24><1020 

3.00xlOlO 

3.7lxl030 

4.59xlOSO 

l.24xl0 20 

9.llxl0- 28 

6.37xl0 1 

5. 73xl022 

l.0lxl0 14 

1. 72xlo33 

2.73xlO-lJ 

2.73xl0-l] 

3.37xl0 3 

l.0lxl0 14 

6.62xl0- 27 

6.62xl0- 27 

5.37xlo- 47 

8.19xl0- 7 
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-------------------------------------------------------------------------------------Physical Symbol and Name Dhensions Conversion factor 
quantity definition CGS: -------------------- 1 unH CES = 

equality CES: natural CGS CES .... unHs CGS 
---·---------------------------------------------------------------------------------

GRAVIMAGRETIC UNITS 

GravH. potential t = -ym/r gravpotent cr:i2s -2 cm2s-2 8.99xl02Q • 

... 
cm s-2 Cm s- 2 3.71xl030 Gravit. intensity G = -gradt gravintens 

Magr. potential 
... ... 
A= -ymv/cr magrepotent cm2s-2 cm2s-2 8.99xl020 

Magr. intensity B = rotA magreintens cm s- 2 cm s· 2 3.7lxlQJO 

-------------------------------------------------------------------------------------
ELECTROMAGNETIC UNITS 

Electric charge q = Ur abcoulomb gl/2cm3/2s-l El/2cml/2 1.4lxlQ-B 

Charge density Q = dq/dV abcoul./cm3 gl/2cm -3/2s -1 El/2cm·5/2 9.S6xlOZO 

Space current -1- ... abampere cm 9112cm5/2s·2 El/2cm3/2s·l 4.23xl02 
J = qv 

Time current 'f abampere cm gl/2cm5/2s·2 El/2cm3/2s·l 4.23xl02 
J = q C 

Electric current I= dq/dt abampere gl/2cm3/25-2 El/2cml/2s·l 1. 74xl012 

Current density j = Qi abampere/cm2 g112cm-112s-2 E112cm·312s-1 2.96xl031 

Electr. potential t = q/r abvolt 9112cml/2s·l El/2cm·l/2 5.80xl01 

... gl/2cm-l/2s-l El/2cm-3/2 2.39xl011 Electr. intensity E = -gradt abvolt/cm 

... ... 
9112cml/2s·l El/2cm·l/2 5 .80xl01 l-lagn. potential A= qv/cr gauss cm 

... ... gl/2cm-l/2s-l El/2cm-3/2 2.39xl011 Magn. intensity B = rotA gauss 

Magnetic flux 
...... 

t = B.s maxwell gl/2cm3/2s-l El/2cml/2 1.4lxl0-B 

El.dipole moment a = qr abcoul.cm gl/2cm5/25-l El/2cm3/2 3.43x1o·lB 

Magn. dip. moment in= rxj/2c abcoul. cm gl/2cm5/25-l El/2cm3/2 3.43xlo·lB 

1 natural second = 1 Sec = 1 s = 8.09xl0-21 s. {42.13) 

We see that the name of the system CES is constituted from the first letters of 
the units of rreasurerrent for the fundamental physical quantities length, energy and 
ti me. 

The name of the system CGS is constituted from the first letters of tie units of 
measurement for the fundamental quantities length, mass and time. 

All formulas in the first four chapters of this book are written in the system 
CGS. If we put the fundamental constants c and h equal to untity, we obtain all 
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formulas in the system CES. 

Since the standard for mass as gravitational charge of the particle and the stan­

dard for mass as a measure of its time energy are one and the same quantity, the di­

mensi~ns of the mass obtained with the help of the time energy (see formula (2.5)) 

determine the dimensions of the gravitational constant y (see formula (2.9)). 

This is not the case with the dimensions of the electric charge and the electric 

constant E0 • If we choose the electric constant dimensionless (as we do in the sys­

tems CES and CGS), then the dimensions of the electric charge are established by the 

dimensions of the fundamental physical quantities. If we appropriate the dimensions 

of a fundamental (fourth) physical quantity to the electric charge (as we do in the 

system SI - see Sect. 43), then the electric constant will obtain definite dimen­

sions. We must no1Ethat whether one chooses the electric constant dimensionless or 

not is only a question of taste (the choice of the electric constant with dimensions 

is an indication of bad taste!). 

In table 42.1 I give the names and the dimensions of the units of measurement of 

the roost important physical quantities in the system; CGS and CES. The physical quan­

tities are fundamental (primary), auxiliary (which can be considered as fundamental) 

and derivative (secondary). Of the derivative physical quantities (mechanical, gra­

vimagretic and electromagnetic) I give only these which are mainly used in this book. 

In the table I give also the connections which exis.t between the units of measure­

ment in the system; CES and CGS. The dimensions of the physical quantities in the 

system CGS-erg are the same as in the system CES, only instead of the natural Cm, E, 

S, one must w,rite the "normal" cm, erg, sec. 

It is easy to see that if we assume the definition equalities in the second colu1111 

as given, we can find the conversion factors between the units of measurement of all 

derivative physical quantities by making use only of the conversion factors between 

the fundamental physical quantities. 

In table 42.2 the values and dimensions of the universal constants are given. 

Table 42.2 

-----------------------------------------------------------------------------------
Universal 

constant 

Dimensions 
Symbol----------------------

CGS CES 

Numerical value 

CES 

-------.--------------------------------------------------------------- --
Velocity of light C cm s-l Cm s-1 3.00xlQlO 1 

Planck constant h g cm2s-l E S 6.62xl0- 27 1 

Gravit. constant y -1 3 -2 g cm s C 1cm5s-4 6.67xlo-B 2.78xlo- 46 

Electron mass me g E cm-2s2 9.llxl0-28 1 

Electric constant E 1 1 
0 

Electron charge qe 
gl/2cm3/2 5 -1 El/2cml/2 4.SOxlO-lO 3.4lxlQ-z 

-----------------------------------------------------------------------------------
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43. SYSTEM OF UNITS SI 

The systems of units CGS and CES are of co111100n use in theoretical physics. In the 

last time, however, the RATIONALIZED SYSTEM OF UNITS MKSA (meter-kilogram-second­

arrpere) which was used first in the engineering sciences is used also in theoreti­

cal physics. It is also called the INTERNATIONAL SYSTEM OF UNITS (or SYSTEM SI) and 

one introduces it worldNide as the only system to be used. I am definitely against 

the use of the system SI in theoretical physics, and I write rey theoretical papers 

and books in the system CGS (see the preface). 

In the system MKSA (or SI) meter, kilogram (joule for energy) and second are cho­

sen as units of measurement for the fundamental physical quantities. The relations· 

between the units of measurement for the fundamental physical quantities in the sys­

tems MKSA (or SI) and CGS are: 

1 m = 100 cm, 

1 kg = 1000 g (or 1 joule 107 erg), 

1 s = 1 s. 

For the universal constants c, h and y in the system SI we obtain 

.c = 3.00xl0 8 m s- 1, 

h = 6.62x10- 34 kg m2 s- 1, 

y = 6.67xl0-ll kg-l m3 s- 2 • 

(43.1) 

(43.2) 

With the aim of avoiding the fractional powers in the dimensions of the electro­

magnetic quantities in the system SI, the unit for electric charge is introduced 

as a fourth fundamental unit of measurement (in one line with the meter, kiligram 

and second) and is called COULOMB (denoted by C). Some prefer to consider A= C s- 1, 

called AMPERE, as the fourth fundamental unit and for this reason the system is cal­

led MKSA. This is again a bad taste. Although now in the system SI the arrpere is san­

ctioned as the fourth fundamental quantity, I shall consider here the coulomb as such 

a one, as this consideration is more "didactic". 

Besides, with the aim of obtaining most formulas used in electro-engineering 

practice in a sirrpler form (to avoid factors 2n and 4n appearing in situations not 

involving circular or spherical symmetry, respectively), we work in system SI not 

with formula (2.11) but with Ue = q 1q/4m:
0

r and the numerical value of the electric 

constant is chosen 
(43.3) 

() 

One can easily see that if the electric charge is considered as a fourth fundamen­

tal physical quantity, the electric consta.nt obtains the dimensions indicated in for­

mula (43.3). 

The rel a ti on between the electric and magnetic constants can be taken either in 
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the form e:
0

JJ
0 

= l or in the form e:0 JJ0 = c- 2 . In the Gauss system CGS the first form 

is chosen. If we choose the second form, assuming e:0 =l, we obtain the so-called 

ELECTROSTATIC CGS SYSTEM OF UNITS (or SYSTEM CGSe), where all units of the electric 

quanti_ties are the same as in the system CGS, but the units for the magnetic quanti­

ties are different, and the magnetic constant obtains the numerical value 

JJ
0 

= (1/9)10- 20 cm-2 sec 2 , (43.4) 

with the dimensions written on the right side. 

If we choose the second form, assuming)J0 = 1, we obtain the so-called ELECTROMAG­

NET! C CGS SYSTEM OF UNITS ( or SYSTEM CGSm), where all units for the magnetic quanti­

ties are the same as in the system CGS, but the units for the electric quantities 

are different, and the· electric constant obtains the numerical value 

e:
0 

= ( 1/9) 10-20 cm-2 sec 2 , 

with the dimensions written on the right side. 

(43.5) 

In the system SI the connection between the electric and magnetic co1stants is 

taken in the form e:
0
)J

0 
= c- 2 ; thus, the numerical value of the magnetic,constant in 

the system SI is -7 -2 
JJ

0 
= 41110 C kg m. (43.6) 

Now we shall find the value of the electron charge in the system SI. Dividing 

formula (2.11) by the formula 

which is the Coulomb law in the system SI, we obtain, putting q 1 = q2 = qe, 

e:0 Ue r 1/2 
qe = q I ( 411 - - -) I 

e e:b u~ r' 

(43. 7) 

(43.8) 

where the unprimed quantities are in the system SI and the primed quantities are in 

the system CGS. Substituting e:0 from (43.3), putting e:~ = 1, q~ = 4.BOxlo- 10, and 

taking from (43.1) the conversion factors between the units of measurement for ener­

gy and length, we obtain the numerical value of the electron charge in the system SI 

(43.9) 

From here and from table 42.2 we obtain the connection between the units of mea­

surement for electric charge in the systems SI and CGS 

1 Coulomb = 3xl0 9 abcoulomb. (43.10) 

Let us note (see table 42.1) that the names of the electric quantities in the sy­

stem CGS are obtained putting "ab" before the co.rresponding name in the system SI, 

as the Gauss system of units CGS is called also ABSOLUTE SYSTEM OF UNITS; the magne­

tic quantities in the system CGS have their proper names. 

The names and dimensions of the units of measurement for the most important phy-
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sical quantities in the system SI, and their relationship to the corresponding units 
of mesurement in the system CGS are given in table 43.1. 

Concerning table 43. l the following is to be noted: 
Jhe conversion factors between the units of measurement in the systems SI and 

Physical 
quantity 

Length 

Mass 

Time 

Velocity 

Energy 

Force 

Power 

Symbol and 
definition 
equality 

r = r 

m = m 

t = t 

v = dr/dt 

e = mc2 

1 = mdv/dt 
...... 

P = f.v 

Name and symbol 
of the unit 

Table43.l 

Corr. Conv. factor 
Dimensions factor 1 uni~ SI= 

... umts CGS 

FUNDAMENTAL UNITS 

meter 

kilogram 

second 

m 

kg 

s 

MECHANICAL UNITS 

mes m/s 

joule J 

newton N 

watt w 

m 

kg 

s 

m s-l 

kg m2s-2 

kg m s- 2 

kg m2s-3 

102 

103 

1 

102 

107 

105 

107 

------------------------------------------------------------------------------------
ELECTROMAGNETIC UNITS 

Electric charge q = q coulomb C C 3xl09 

Space current -t- ... 
Am Cm s- 1 3x1011 J = qv ampere m 

Time current 3 = qc ampere m Am C m s-l 3xl011 

Charge density Q = dq/dV coulomb/m3 C/m3 C m-3 3xl03 

Electric current I= dq/dt ampere A C s-l 3xl09 

Current density 
... ... 
J = Qv ampere/m2 A/m2 C m-2s-l 3xl05 

Electr. potential <I> = q/4m:
0
r volt V C1kg m2s-2 (1/3)10-2 

Electr. intensity 
... 
E = -grad<!> volt/m V/m C1kg m s-2 (1/3)10-4 

Magnetic potential 
.... ... 
A = µ

0
qv/4'1!r tesla m Tm C1kg m s-l C 106 

... ... C1kg s-l 104 Magnetic intensity B = rotA tesla T C 

...... C1kgm2s-l 
f) 

108 Magnetic flux <I> = B.s weber Wb C 

El. dipole moment iJ = qr coulomb m Cm C Cl 3xl011 

Magn.dipole moment in= rxj/2 ampere·m2 Am2 C m2 s-1 C 9xl02 3 
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CGS can be obtained if in the dimensions of the corresponding unit of measurement 
in the system SI we substitute the conversion factors for the fundamental physical 
quantities (relations (43.1) and ~3.10)). When calculating the conversion factors 
for th~ magnetic units of measurement, we must take into account the corresponding 
correction factor.c (the fifth column in table 43.1) appearing as a result of the 
fact that the system CGS is built proceeding from the relation £o = 1/µ0 , while the 
system SI is built proceeding from the relation £o = l/c 2µ0 • 

If ~he magnetic potential in the Gauss system would be defined not in the form 
given in table 42.1 but in the following form 

A = qv/c2r, (43.11) 

then we had not to take into account the correction factor. At such a definition of 
A, c in the denominators of many formulas in the Gauss system would disappear and 
the formulas would look much more similar to the formul~s in the system SI. 

Ftirtherrrore we have to note that the nunber 3 appearing in some conversion fac­
tors is to be substituted in more precise calculations by 2.99793 (see the transi­
tion between formulas (43.8), (43.9) and (43.10)). 

With the help of table 43.2 we can make the transition from a formula written in 

Table43.2 
-------------------------------------------------------------------

Physical quantity System CGS System SI 

-------------------------------------------------------------------
Velocity of light C (£ µ f 1/2 

0 0 

Electric charge q q 

Electric charge density Q Q 

Space current "T "T 
J J 

Time current .. ., 
J 

(4'1T£ fl/2x J 
Electric current I o I 

Electric current density j j 

Electric dipole moment ii il 
Magnetic dipole moment + (µ/ 4'1T)l/2 + m m 

Electric potential <I> 

( 4'!T£ ) 1/2x 1: Electric intensity E 0 

Magnetic potential 1. 1. 
Magnetic intensity + 

(4'1T/µo)l/2x B B 

Magnetic flux <I> <I> 

---------------------------------------·---------------------------
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the system CGS to the corresponding formula written in the system SI, and vice versa. 

To make this transition, it is necessary to substitute all quantities in the formu­

la written in the system CGS (see column "system CGS") by the corresponding quanti­

tie,s taken with the attached coefficient from the column "system SI". For the in­

verse transition (from a formula written in the system SI to obtain the formula 

written in the system CGS) we have to trans fer the coefficients from the column "sy­

stem SI" to the corresponding quantities in the column "system CGS", according to 

the rules of proportion, and to proceed analogically as above. 

Table 43.2 is obtained in the following way: 

1. The connection between the constant c in the system CGS and the constants E0 , 

µ0 in the system SI is found on the grounds of the fundamental relation E0µ0 = 1/c 2 

2. The conversion factor for the electric charge is to be found from the rela­

tions 
,2 

UI - q • --, e r (43.12) 

where the first relation is written in the system SI and the second in the system 
CGS, so that 

q' q 

( 41TEO) 1/2. 
(43.13) 

3. All other conversion factors are obtaine·d on the grounds of the dimensions of 
the corresponding quantity in the system SI (see table 43.1), where the meter, kilo­

. gram and second are to be taken without any corrective multiplier, and only the cou­

lomb is to be taken according to the relation (43.13). 

In the SI system the electric displacement D and the magnetic intensity Hin va­

cuum are expressed through the electric intensity E and the magnetic induction B 

(which, I repeat, I call "magnetic intensity", as B and H have exactly the same phy­

sical character!) not according to formula (20.2) and (20.B), with E = 1, µ = 1 _(as 

we do in the system CGS) but according to the formulas D = E0E, H = (l/µ 0)8, and as 

E0 and% in the system SI are quantities with dimensions (see (43.3) and (43.6)), 
D and H have dimensions different from E and B. The name of the SI unit of Dis 

coulomb/m2 and the symbol and the dimensions are C m-2 . The name of the SI unit of 

H is ampere/m, the symbol is A/m and the dimensions are C s-lm- 1• 

If some quantity is not included in table 43.2, in order to find the conversion 

factor, the quantity is to be presented by some of the indicated quantities. So we 
shall have: 

For resistance, R = U/I = <l>/I, the conversion factor is 411.:0. -'.·) 

For capacitance, C = q/U = q/<I>, the conversion factor is 1/ 411£0• 

For inductance, L = <l>/I' the conversion factor is 1/2 411(E/µ0) . 
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The following prefixes should be used to indicate decimal fractions or multiples 

of a unity: 

Table43.3 

Name Value Symbol Name Value Symbol 

deci 10-l d deca 101 da 

centi 10-2 
C hecto 102 h 

mill i 10-3 m kilo 103 k 

micro 10-6 µ mega 106 M 

nano 10-9 n giga 109 G 

pico 10-12 p tera io12 T 

femto 10-15 f peta 1015 p 

atto 10-18 a exa 1018 E 

All formulas in Chapter VI, which is dedicated only to experiments, will be writ­

ten in the system SI, with the exception of Sect. 46.2 which has important theoreti­

cal character and thus this Subsection is written in the Gauss system. 
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VI. E X P E R I M E N T A L V E R I F 1 C A T 1 0 N S 

44. THE COUPLED SHUTTERS EXPERIMENT 

44. 1. INTRODUCTION. 

The first experimental· verification of the theory presented in the preceding 

chapters wi 11 be l1lY "coupled shutters" experiment for measurement of the Earth's 

absolute velocity in a laboratory. 

This was fllY third optical measurement of the Earth's absolute velocity. For a 

first time I measured this velocity with my DEVIATIVE "COUPLED MIRRORS" EXPERIMENT 

in 1973( l) and for a second time with l1lY INTERFEROMETRIC "COUPLED MIRRORS" EXPERI­

MENT in 1975/76. (4 ) With this second experiment whic~ was carried out during a year 

I could register the absolute motion of the Sun. 

I give here only the report on l11Y "coupled shutters" experiment. 

The COUPLED SHUTTERS EXPERIMENT was carrie'd out for a first time in 1979 in 

Brussels( 24 l. The accuracy achieved with this first experiment was not sufficient 

for registering the Earth's absolute velocity. Thus with its help I could only es­

tablish that this velocity was not larger than 3,000 km/sec. The "coupled shutters" 

experiment is relatively very simple and cheap( 24 l, however no scientist in the world 

has repeated it. The general opinion expressed in numerous letters to me, in refe­

rees' comments on fllY papers, and in speeches on different space-ti me conferences 

which I visited or organized(Z 5 ) is that fllY experiments are very sophisticated and 

difficult for execution. The only discussion in the .press on the technical aspects 

of l1lY experiments is made by Chanters. (26 ) Here .I should like to cite the comments 

of l1lY anonymous FOUNDATIONS OF PHYSICS referee sent to me by the editor, Prof. van 

der Merwe, on the 23 June 1983: 

I was informed by (the name deleted) of the Department of the Air Force, 

Air Force Office of Scientific research, Bolling Air Force Base, that Dr. 

Marinov's experiments were to be repeated by the Joint Institute for La­

boratory Astrophysics. On inquiry, I learnt that JILA is not carrying out 

the experiments, because preliminary engineering studies had indicated 

that it lay beyond the expertise of the laboratory to achieve the mechani­

cal tolerances needed to ensure a valid result. 

After presenting my objections that the fact that JILA in the USA is unable to 

repeat my experiments cannot be considered as a ground for the rejection of ITlY pal)'!rs 

dedicated not at all to measurement of absolute velocity, Prof. van der Merwe sent 
me on the 24 January 1984 the following "second report" of the same referee: 

It is with regret that I cannot change my recommandation _regarding Dr. 

Marinov's papers. In trying to justify the ·validity of his experimental 
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work, Dr. Marinov highlights the points which cause the rest of the comnu­
nity so much concern. He states, "If I in a second-hand workshop in a 
fortnight for i 500 achieve the necessary accuracy, then, I suppose, JILA 
can achieve it too." I know of no one in the precision measurement comnu­
nity who believes that measurements of the quality claimed by Dr. Marinov 
could be realized under such conditions and in so short a time. It will 
take very much more than this to change the direction of physics. I sus­
pect that even scientists working in the most reputable laboratories in 
the U.S. or the world, would encounter great opposition in attempting to 
publish results as revolutionary as those claimed by Dr. Marinov. 

In this paper I present the account on the measurement of the laboratory's abso­
lute velocity, executed by me in Graz with the help o~ a new construction of my 
"coupled shutters" experiment. Now the apparatus was built not in seven days but 
in four.. As the work was "black" {a mechanician in a university workshop did it 
after the working hours and I paid him "in the hand"), the apparatus was built pre­
domenantl.v at the week-end and cost 12,000 Shillings. The driving motor was taken 
from an old washing-machine and cost nothing. 

As no scientific ·laboratory was inclined to offer me hospitality and possibility 
to use a laser source and laboratory mirrors, my first intention was to use as a 
light source the sun. As I earn my bread and money for continuing the scientific 
research working as a groom and sleeping in a stall in a small village near 
Graz, I carried out the experiment in the appartment of my girl-friend. The sensi­
tivity which I obtained with sun's light (a perfect source of homogeneous parallel 
light) was good, but there were two inconveniences: 1) The motion of the sun is 
considerable during the time when one makes the reversal of the axle and one cannot 
be sure whether the observed effect is due to the delay times of the light pulses 
or to the Sun's motion. 2) One can perform measurements only for a couple of hours 
about noon and thus there is no possibility to obtain a 24-hours "sinusoid" (see 
further the paper for explanation of the measuring procedure). On the other hand, 
at fast rotation of the axle the holed rotating disks became two sirens, so that 
when IIIY apparatus began to whistle the neighbours knocked on the door, asking in 
dismay: "Fliegt schon der Russe Uber Wien?" (ls Ivan over Vienna flying?). After a 
couple of altercations, my girl-friend threw away from her appartment not only my 
apparatus but also me. 

Later, however, I found a possibility to execute the experiment in a laboratory 
(fig. 18), The scheme of the experiment, its theoretical background and measuring 
procedure are exactly the same as of the Brussels variation<24J. Since the descrip­
tion is extremely simple and short, I shall give it also here, noting that the 

mounting of the laser and of the mirrors on the laboratory table lasted two hours. 
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Fig. 18. The "coupled shutters" experinent. 
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But first, following the example of NATURE which gives interesting quotations 
from its editions hundred years ago, I should like to give also a similar one: 

If it were possible to measure with sufficient accuracy the velocity of 
light without returning the ray to its starting point, the problem of 
measuring the first power of the relative velocity of the Earth with res­
pect to the aether would be solved. This may be not as hopeless as might 
appear at first sight, since the difficulties are entirely mechanical and 
may possibly be sunnounted in the course of time. 

The names of the authors are Michelson and Morley, the year of publication 
is 1887. This is the paper in which Michelson and Morley give their account on the 
historical experiment for"measurement' of the two-way light velocity. The paper is 
published in two journals: THE PHILOSOPHICAL MAGAZINE and AMERICAN JOURNAL OF SCI­
ENCE. After giving this general opinion, Michelson and Morley present the proposi­
tion of an experiment which is almost the same as my deviative "coupled mirrors" 
experiment.(l) They propose to use a bridge method with two selenium cells where 
the null instrument is a telephone. I must emphasize that I could not succeed to 
find a single paper or book treating the historic Michelson-Morley experiment, 
where information on their one-way proposal should be given. 

44.2. THEORY OF THE COUPLED SHUTTERS EXPERIMENT. 

A rotating axle driven by an electromotor, put exactly •at the axle's middle, 
has two holed disks at its extremities. The distance from the centers of the holes 
to the center of the axle is Rand the distance between the disks is d. Light co­
ming from a laser is divided by a semitransparent prism and the two beams are led 
by a couple of adjustable mirrors to the opposite ends of the rotating axle, so 
that the beams can fly through the disks' holes in mutually opposite directions. 
Any of the beams, after being chopped by the near disk and "detected" by the far 
disk, illuminates a photocell. By a galvanometer one measures the difference of 
the currents generated by both photocells. If covering one of the cells, one measu­
res the current produced by the other cell. 

One arranges the position of the laser beam with respect to the disks' holes in 
such a manner that when the axle is at rest the light of the laser which passes 
through the near ho 1 e i 11 umi na tes the ha 1f of the far ho 1 e. Then one sets the ax 1 e 
in rotation gradually increasing its speed. Sihce the light pulses cut by the near 
holes have a transit time in order to reach the far holes, with the increase of the 
rate of rotation less and less light will pass through the far holes, when the 
distant holes "escape" from the light beam positions, and,conversely,more and more 
light wil 1 pass through the far ho 1 es, when the distant holes "enter" into the 

light beam positions. For brevity I shall call the first kind of far holes "esca-
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ping" and the second kind of far holes "entering". 

If one assumes that the holes as. well as the beams' cross-sections are rectan­
gular and the illuminations homogeneous, then the current !horn produced by any of 
the photocells will be proportional to the breadth b of the light spot measured on 
the surface of the photocell when·the axle is rotating, i.e., !horn~ b. When the 
rotational rate of the axle increases with tiN, the breadth of the light beam pas­
sing through "escaping" holes will become b - tib, while the breadth of the light 
beam passing through "entering" 

will become !horn - tiI ~ b - tib, 

holes will become b + tib, and.the produced currents 

!horn+ ti!~ b + tib. Thus 

tib = b ...Af._, (44.1) 
1hom 

where ti! is the half of the change in the difference of the currents produced by 
the photocells. 

One rotates the axle first with tiN/2 counter-clockwise and then with tiN/2 clock­
wise, that corresponds to a change tiN in the rate of rotation. Since 

tib = (d/c) 2ntiNR, 

for the one - way velocity of 1 ight one obtains 

C 
= 2n tiN Rd 1hom 

b til . 

(44. 2) 

(44.3) 

In my experiment the holes as well as the light beams were circular and not rec­
tangular. Consequently instead of the measured light spot's breadth one has to take 
certain slightly different "effective" breadth. As the breadth b can never b_e mea­
sured accurately, the discussion of the difference between real breadth and "effec­
tive" breadth is senseless. Much more important, however, was the fact that the 
illumination in the beams' cross-sections was not homogeneous: at the center it 
was maximum and at the periphery minimum. Thus the simplified relation(44.l)did not 
correspond to reality if under !horn one would understand the measured current. I 
shall give a certain irrproverrent of formula (44.1), taking into account ttie charac­
ter of the illumination intensity over the light spot and the speciphic way in 
which this light spot is "projected" across the "chopping" holes of the near disk 
and the "detecting" holes of the far disk. At this consideration the illuririnationwill 
be assumed to increase linearly from zero on the periphery of the light beam to a 
maximum at its center where the beam is "cut" by the holes' rims~ The real current 
I which one measures is proportional to a certain middle illumination across the 
whole light beam, while the real current ti! is proportional to the~ illumi­
nation at the center of the light beam. On the.other hand, one must take into ac­
count that when the holes let the light· beam fall on the photocell, first li.ght 
comes from the peripheral parts and at the end.from the central parts. When the 
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half of the beam has illuminated the photocell, the "left" part of the beam begins 
to disappear and its "right" part begins to appear, the breadth remaining always 
the half of the beam. Then the holes' rims begin to extinguish first the central 
parts of the beam and at the end the peripheral parts. Here, for simplicity, I sup­
pose that the cross-sections of the beams and of the holes are the same (in reality 
the former were smaller than the latter). Thus during the first one-third of 'the 
time of· illumination the "left" half of the light beam appears, during the second 
one-third of the time of illumination the "left" half goes over to the "right" 
half, and during the last one-third of the time of illumination the "right" half 
disappears. Consequently, the real current, I, produced by the photocell will be re­
lated with the idealized current, Ihom' corresponding to a homogeneous illumination 
with the centra 1 intensity and generated by a 1 ight spot having the half-breadth 
of the measured one, by the following connection 

1 1 2 x 1hom 2 x
3 

1
1 1hom I = -f Ih x (- - -) dx = - (x - -) = -. 

2 0 om 3 3 6 3 0 9 (44 .4) 

In this formula Ihom x dx is the current produced by a strip with breadth dx of the 
light beam; at the periphery of the beam (where x = 0) the produced current is zero 

and at the center (where x = 1) it is Ihomdx. The current Ihom x dx is produced (i.e., 
the corresponding photons strike the photocell) during time 2/3 - x/3; for the pe­
riphery of the beam this time is 2/3 - 0/3 = 2/3 and for the center of the beam this 
time is 2/3 - 1/3 = 1/3. The factor 1/2 before the integral is taken be-
cause the measured breadth of the light spot over the photocell is twice its~ 
breadth. Putting(44.4) into(44.3), one obtains 

c = 211 6N R d 9 I 
b 61 (44 .5) 

According to my absolute space-time theory (3 , 5) (and according to everybody who 
is acquainted even superficially with the experimental evidence accumulated by hu­
manity), if the absolute velocity's component of the laboratory along the direction 
of light propagation is v, then the velocity of light is c-v along the propagation 
direction and c + v against. For these two cases formula(44.5) is to be replaced by the 
fo 11 owi ng two 

211 6N Rd 
C - V = b 

9 I 
' 61 + ol 

c + V = 211 6N Rd 
b 

9 I ---, 
61 - ol 

(44 .6) 

where 61 + ol and 61 - ol are the changes of the currents generated by the photocells 
when the rate of rotation changes by 6N, Dividing the second formula (44.6)by the first 
one, one obtains 

V = (ol/6l)c. (44. 7) 

Thus the measuring method consists in the following: One changes the rotational 
rate with 6N and one measures the change in the current of any. of the photocells 
which is 61 = 61 t oI; then one measures the difference of the~e two changes which 
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is 2 cl. I made both these measurements by a differential method with the same 
galvanometer, applying to it the difference of the outputs of both photocells. To 
measure 2tll I made the far ho 1 es for one of the beam "escaping" and for the other 
"entering". To measure 2 oI I made all far holes "escaping" (or all "entering"). 

44.3. MEASUREMENT OF c. 

In the Graz variation of my "coupled-shutters" experiment I had: d = 120 cm, 
R = 12 cm. The light source was an Ar laser, the photocells were silicon photocol­
lectors, and the measuring instrument was an Austrian "Nonna" galvanometer. I 

measured I = 21 mA (i.e., Ihom = 189 mA) at a rotational rate of 200 rev/sec. 
Changing the rotation from clockwise to counter-clockwise, i.e., with AN= 400 

rev/sec, I measured AI = 52.5 µA (i.e., the measured change in the difference 
current at "escaping" and "entering" far holes was '2AI = 105 µA). I evaluated a 
breadth of the light spot b = 4.3 ± 0.9 11111 and thus I obtained c = (3.0 t 0.6)x108 

m/sec, where as error is taken only the error in the estimation of b, because the 
"weights" of the errors introduced by the measurement of d, R, AN, I, AI were much 
smaller. I repeat, the breadth ·b cannot be measured exactly as the peripheries 
of the light spot are not sharp. As a matter of fact, I chose such a breadth in 
the possible incertainty range of±l 11111, so that the exact value.of c to be obtai­
ned. I wish once more to emphasize that the theory for the measurement of c is 
built on the assumption of rectangular holes and. light beams cross-sections and 
linear increase of the illumination from the periphery to the center. These sim­
plified assumptions do not correspond to the more complicated real situation. Let 
me state clearly: The "coupled shutters" experiment is not to be used for an exact 
measurement of c. It is, however, to be used for an enough exact measurement of 
the variations of c due to the absolute velocity of the laboratory when during the 
different hours of the day the axis of the apparatus takes different orientations 
in absolute space due to the daily rotation of the Earth (or if one will be able 
to put the set-up on a rotating platform). The reader will see this now. 

44.4. MEASUREMENT OF v. 

The measurement of c is an absolute, while the measurement of vis a relative, 
taking the velocity of light c as known. According to formula(44.7) one has to mea­
sure only two difference currents: 2AI (at "escaping" and "entering" far holes) 
and 2oI (at "escaping" £!: "entering" far holes). The measurement in the air of the 
laboratory had two important inconveniences: 1) The dust in the air led to very 
big fluctuations in the measured current differences and I had to use a big con­
denser in parallel to the galvanometer's· entrance, making the apparatus very 
sluggish. 2) The shrill of the holed disks at high rotational rate could lead to 
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the same gloomy result as when executing the experiment in the appartrnent of my 
girl-friend. Thus l covered the whole set-up with a metal cover and evacuated the 
air by an oil pump (this amelioration cost additional 9,000 Shilling). The per­
fonnance of the experiment in vacuum has also this advantage that the people who 
wish to save at any price the wrong light velocity constancy dogma cannot raise 
·the objection that the observed effect is due to temperature disturbances. 

The measurement of 61 is a simple problem as the effect is huge. Moreover all 
existing physical schools cannot raise objections against the presented above the­
ory. However, the measurement of ol which is with three orders lower than 61 has 
certain peculiarities which must be well understood. When changing the rotation 
from clockwise to counter-clockwise, the current produced by the one photocell 
changes, say, from 11 to 11 + 611 + 011 and of the other photocell from, say, I2 
to 12 + t.I2 - 012. One makes 11 to be equal to 12 changing the light beam po­
sitions by manipulating the reflecting mirrors micrometrically. One can difficult­
ly receive an exact compensation, so that the galvanometer shows certain residual 
current I'. The current change t.11 will be equal to the current change 612 only 
if the experiment is entirely syrrmetric. But itis difficult to achieve a complete 
SyPllletry (and, of course, I could not achieve it in my experiment). There·are the 
following disturbances: On the one hand, the distribution of the light intensities 
in the cross-sections of both beams and the fonns of the beams are not exactly the 
same; thus the covering of the same geometri.cal parts of both beams when changing 
the rotation of the axle does not lead to equal changes in the light intensities 
of both beams and, consequently, to 611 = 612• On the other hand, although the 
photocells were taken from a unique sun collector cut in two pieces, even if the 
changes in the illuminations should be equal, the produced currents may become dif­
ferent (the current gain at the different points of the photocells is not the same, 
the internal resistances of the cells are not equal, etc. etc). Thus after changing 
the rotational rate from clockwise to counter-clockwise, I measured certain cur­
rent I'~ rut I" -I' was not equal to 261, as it must be for an entirely symmetric set­
up. However, measuring the difference I" - I' during different hours of the day, I 
established that it was "sinusoidally modulated". This "sinusoidal modulation" was 
due to the absolute velocity v. All critics of my "rotating axle" experiments vo­
ciferate at the most against the vibrations of the axle, affinning that these vi­
brations will mar the whole measurement. Meanwhile the axle caused me absolutely 
no troubles. When measuring in vacuum the axis of the apparatus pointed north/south. 

I.measured the "sinusoidal modulation" during 5 days, from the 9th to the 13th 
February 1984. As l did the experiment alone, I could not cover all 24 hours of 
every day. The results of the measurements are presented in fig.19. The most sen­
sible scale u_nit of the galvanometer was 10 nA. and the fluctuations were never 
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bigger than 20 .. nA. The day hours are taken on the abscissa and the current di ffe­
rences on the left ordinate. After plotting the registered values of I" - I' and 
drawing the best fit curve, the "null line" (i.e., the abscissa) is drawn at such 

a 
11

height 11 that the curve has to cut equal parts of the abscissa (of 12 hours any). 
Then on the right ordinate the current 261 is taken positive upwards from the null 
line and negative downwards. Since 105 µA correspond to a velocity 300,000 km/sec, 
10 nA will correspond approximately to 30 km/sec. Considering the fluctuations of 
the galvanometer as a unique source of·errors, I took± 30 km/sec as the uncertain­
ty error in the measurement of v. 

When 261 has maximum or minimum the Earth's absolute velocity lies in the plane 
of the laboratory's meridian (fig:20). The velocity components pointing to the north 
are taken positive and those pointing to the south negative. I note by va always 
this component whose algebraic value is smaller. W~en both light beams pass through 
"escaping" holes, then,in the case that the absolute velocity component points to 
the north, the "north" photocell produces less current than the "south" photocell 
(with respect to the case when the absolute velocity component is perpendi cliar to the 
axis of the apparatus), while,in the case that the absolute velocity component points 
to the south,the "north" photocell produces more current. If the light beams pass 
through "entering" holes, all is vice versa. Let me note that for the case shown 
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Fig. 19. Measurerrent of 261 in the "coupled shutters" experirrent. 
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in fig. 20 (which does not correspond to the real situation, as in reality va is 
negative) both velocity components point to the north and both va and vb are posi­
tive. In this case the "variation curve" has no more the character of a "sinusoid"; 
it has .4 extrema (for 24 hours) and the "null line." must be drawn tangent to the 
lowest minimum. 

As it can be seen from fig. 20, the two components of the Earth's absolute ve­
locity in the horizontal plane of the laboratory, va and vb' are connected with 

the magnitude v of the absolute velocity by the following relations 

va =vsin(6-<P), (44 .8) 

where <Ii is the latitude of the laboratory and 6 is the declination of the velocity's 
apex. From these one obtains 

{v! + v~ - 2 va vb(cos24i - sin2
<1i)}

112 

V -= 
V + V 

tan6 = b a ta114i. (44.9) 
2 sin<jl COS<jl vb - va 

Obviously the apex of v points to the meridian of va. Thus the right ascension 
a of the apex equaled the local sideral time of registration of va. From fig. 19 

it is to be seen that this moment can be determined with an accuracy of± 1h. Thus 
it was enough to calculate (with an inaccuracy not larger than± 5 min) the sideral 
time tsi for the meridian where the local time· is the same as the standard time tst 
of registration, taking into account that the sideral time at a middle midnight 

s 
Fig. 20. The Earth and its absolute velocity at the moments when the laboratory 

meridian lies in the velocity's plane. 



- 165 -

is as foll OWS: 

22 September - oh 23 March - 12h 

22 October - 2h 23 Apri 1 - 14h 

22 Nov:ember - 4h 23 May - 16h 

22 December - 6h 22 June - lSh 

21 January - sh 23 July - 20h 
21 February - 10h 22 August - 22h. 

The graph in fig.19 shows that on the 11th February (the middle day of observa­
tion) I registered in Graz (~ = 47°, o = 15° 26') the following absolute veloci­
ty's components at the following hours (for 2(oI)a = - 120 nA, 2(oI)b = 50 nA) 

va = - 342 ± 30 km/sec, (tst>a = 3h ! 1h, 

vb=+ 143 ! 30 km/sec, 

and fonnulas (9) give 

• .h . h 
(tst)b =.15· ! l ' (44.10) 

v = 362 ! 40 km/sec, a= (tsi>a = 12.sh ± lh, 
(44,11) 

where the errors are calculated supposing~= 45°. 
The local sideral time for the observation. of va (i.e., the right ascension of 

the absolute velocity's apex) was calculated in the following ma·nner: As for any 
day the sideral time inreases by 4m (with respect to the solar time), the sideral 
time at midnight on the 11th February (which follows 21 days after midnight on the 
21 January) was sh + l h 24m = 9h 24m. At 3h middle European (i.e. , Graz) time on 
the 11th February the local sideral time on the 15th meridian was 9h 24m + Jh = 
12h 24m. On the Graz meridian the local sideral time was 12h 24m + 2m = 12h 26m = 

'h 12.5 . 
Important remark. Now I establish that when calculating the local sideral time 

of observation of va for my interferometric "coupled mirrors" experiment2•3•4•5), 

I made a very unpleasant error. As Sofia (A= 23° 21') lies westwards from the 
middle zonal meridian (A= 30°), I had to subtract the difference of 6° 39', which 
correspond to 27m, from the local sideral time of the zonal meridian. Instead to 
do this, I wrongly added. Thus the given by me numbers are to be corrected as fol­
lows: 

Observation on the 12 July 1975: 

Observation on the 11 Jan. 1976: 

Right ascension of the apex of 
the Sun's absolute ·velocity: 

wrongly calculated: 
( t . ) = 14 h 23m 

Sl a 
h m 

(ts; la = 14 11 

a = 14h 17m 

to be corrected to: 
(t .) = lJh JOm 

Sl a 

(tsi la = lJh ,17m 

a = lJh 23m 

I beg the persons who will refer to the measurement of the Sun's absolute velo-
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city done by me in 1975/76 to cite always the corrected here figures and not the 
wrongly calculated figures presented in Refs. 1-5, 27, 28 -and in some other of 
my papers. 

44.5. CONCLUSIONS. 

Comparing the figures obtained now by the Graz variation of my "coupled shut­
ters" experiment with the figures obtained some ten years ago in Sofia by the in­
terferometric "coupled mirrors" experiment, one sees that within the limits of 
the supposed errors they overlap. Indeed, on the 11 January 1976 I registered in 
Sofia the following figures 

v = 327 ± 20 km/sec, (44 .12) 

As for the time of one month the figures do not cha~ge significantly, one can 
compare directly the figures(44l~ with the figures(44l2). The declinations are the 
same. As the Graz measurements were done every two hours, the registration of the 
right ascension was not exact enough and the difference of about one hour is not 
substantial. I wish to point only to the difference between the magnitudes which 
is 35 km/sec. I have the intuitive feeling that the figures obtained in Sofia are 
more near to reality. The reason is that I profoundly believe in the mystic of the 
numbers, and my Sofia measurements led to the magic number 300 km/sec for the 
Sun's absolute velocity (which number is to be considered together with 300,000 
km/sec for light velocity and 30 km/sec_ for the Earth's orbital velocity). The 
Graz measurement destroy~ this mystic harmony. 

The presented acount on the Graz "coupled shutters" experiment shows that the 
experiment is childishly simple, as I always asserted( 29) If the scientific corrmu­
nity so many years refuses to accept my measurements and nobody tries to repeat 
them, the answer can be found in the following words of an acanite fighter against 
authorities: 

TERRIBLE IS THE POWER WHICH AN AUTHORITY EXERTS OVER THE WORLD. 
· Albert Einstein 

I wish to add in the end that with a letter of the 29 December 1983 I informed 
the Nobel committee that I am ready at any time to brin9 (for my account) the "coup­
led shutters" experiment to Stockholm and to demonstrate the registration of the 
Earth's absolute motion. With a letter of 28 January 1984 Dr. B. Nagel of the Phy­
sics Nobel corrmittee informed me that my letter has been received. 

After about forty submissions, this report on the execution of the "coupled 
shutters" experiment was finaly published in Ref. 30. 
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45. THE QUASI-KENNARD EXPERIMENT 

The electromagnetic experiment with whose help I succeeded to measure the Earth's 

absolute velocity (as a matter of fact to register the right ascension of its apex) 

was the QUASI-KENNARD EXPERIMENT whose theory was shortly considered in Sect. 21 and 

whose diagram was given in fig. 5. The execution of the experiment was the following 

(see fig. 5): 

In a rectangular loop-with length d = 150 cm and breadth b = 15 cm a metal bar 

with length b -b 0 = 14.5 cm was placed. The loop had N = 100 windings and a current 

10 = 3 A was sent through the wire, so that the total current along the rectangle 

was I= NI0 = 300 A. Let us assume that the magnetic intensity generated by the ho­

rizontal wires of the loop at a distance r from the wires is the same as of an in­

finitely long wire, i.e., B = µ0 I/2nr (see formula (21.12)). 

If moving the bar to the right with a velcoity v,_ at the indicated direction of 

the current along the loop, an induced motional electric tension with the indicated 

polarity will appear along the bar, whose magnitude will be (take into account that 

the horizontal current wires are double and assume b » b0 ) 

b-b 0 /2 
b-b 0/2 µ vi _ µ vI 2b 

U = J 2vBctf = - 0
- f dy/y = - 0

- ln-, (45.1) 
mot bo/2 7f bo/2 7f bo 

what is formula (21.10) which was written in the CGS system of units. 

Let us now assume that the vertical bar is kept at rest and the rectangular loop 

· is rooved with the same velocity to the left. Now the induction will be notional­

transformer and the calculation is to be done by using formula (21.4). The x-compo-

nent of the magnetic potential, Ax, will be a function only of y, they-component 

(ford» lxl), 
A = \Jo lb __ \J~o_I_b __ = _2µ_0_I_b_x • 

Y 4n( d/2 - x) 4n( d/2 + x) nd2 
(45.2) 

will be a function only of x, and the z-corrponent, Az, will be equal to zero. Thus 

the only term of the vector gradient (21.4) which is different from zero gives the 

rootional-transformer electric intensity which will be induced 

=V ~y=-2\JoVlby, 
Emot-tr x ax nct2 

(45.3) 

as Vx = -v. From formula (45.3) we find the magnitude of the induced notional-trans-

former tension 

(45.4) 

and the approximate null result (ford» b) was obtained in formula (21-.11). Thus 

Umot is much bigger than Umot-tr and the latter, to a good approximation can be ta­

ken equal to zero. 

If the loop and the bar will be moved together, then, as Umot-tr = 0, the tension 
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which will remain to act along the bar will be the motional tension. But if the loop 

and the bar move together, the question is to be posed: with. respect to what? The 

answer, of course, can be only one: with respect _to absolute space. This answer was 

given-also in Sect. 23 by the help of the relative Newton-Lorentz equation. 

Taking( 4 , 3o) for the Earth's absolute velocity approximately V = 300 km/sec (see 

Sect. 44), we obtain from formula (45.1) for our experinent U = 147 v: 
It is clear that this tension cannot be neasured by a voltneter, as the tension 

in a closed loop must be null (see the end of Sect. 21). Thus I did "electronetric" 

neasurenents by putting very thin foils of darq:ied aluminium at the extremities of 

the bar. The dinensions of the bar were 14.Sxl.Sx0.3 cm. The one side of the foils 

was conducting and the other not. The foils were attached to the bar by their con­

ducting faces. 

The detector showed an effect (opening of the foils) by putting on the bar ten­

s i ons down to 12 V. 

As in the laboratory there were many different causes which led to an opening of 

the aluminium foils (let us call them disturbing effects), I did not care about to 

try to specify and eventually eliminate them. Thus the Al-foils were always to a 

certain extent open and during the different days the opening was different. I could 

observe the effect of the absolute motion of the Earth only by mounting the set-up 

on a rotating platform. I observed by rotation that there were two positions ·where 

the opening of the foils was maxi ma 1 and two positions where it was mini ma 1. The 

difference between those positi ans was always about 90°. 

It was difficult to make calibration of the detector, as the check tension was 

applied by connecting the bar with one electrode of a variable tension, while the 

induced tension to be neasured was applied between the end points of the bar. Thus 

it was very difficult to fit the degree of opening of the foils to formula (45.1) 

as the geonetry of the experinent was not easily calculable (the foils had to cover 

the smallest sides of the bar, not the extremities of the largest side, as it was in 

11\Y experinent) and the readings were not enough stable and repeatable. 

The nethod for establishing the magnitude of the Earth's absolute velocity and 

of the equatorial coordinates of its apex (if the readings of the calibrated detec­

tor would reliably correspond to the tension induced along the bar) is given in Sect. 

44.4. I used this nethod only f?r establishing the right ascension of the apex. For 
this reason I registered the two monents when the opening of the foils was maximum 

for a direction of the axis of the set-up "north-south". 

On the· 22 January 1989 I registered in Graz (cj, = 47°, >.. = 15°26') maximum opening; 

of the leaves at the following two monents of Middle-European standard tine: (tstla = 

3.sh, (tstlb = Is.sh. The local sideral timesco~responding to these two monents were: 

(ts; la = 11.sh, (ts; lb = 23.sh. One of these tines was equal to the right ascension 

of the velocity's apex. The inaccuracy was estimated± 1h. (Cf. Sect. 44.4.) 

This report on the quasi-Kennard experinent was published in Refs. 31 and 32. 
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46. THE DIRECT AND INVERSE ROWLAND EXPERIMENTS 

46.1. INTRODUCTION. 

Rowland ( 33) carried out in 1876 the following experinent: A disk was charged 

with positive (or negative) electricity. There was a rragnetic needle in the neigh­

bourhood of the disk. When the disk was set in rotation, the needle experienced a 

torque due to the rragnetic action produced by the convection current of the charges 

rotating with the disk. A call this the DIRECT ROWLAND EXPERIMENT (fig. 21). 
According to the principle of relativity, if the disk will be kept at rest and 

the needle will be set in rotation, the sane torque has to act on it. Such an expe­

rinent is .called by ne the INVERSE ROWLAND EXPERIMENT (fig. 22). However, as I shall 

show in the following subsection, according to the relative Newton-Lorentz equation 

(23.4), the rragnetic needle will not experience a torque at the inverse Rowland ex­

peri nent. 

The above two experinents can be called ROTATIONAL Rowland experinents: It is ea­

sy to transform them into INERTIAL experinents. So if we charge a conveyer belt and 

set it in action, the 11Dtion of the charges can be considered as intertial (i.e., 

with a velocity constant in value in direction) over a considerable length of the 

belt and we shall realize thus the inertial direct Rowland experinent; On the other 

Fig. 21. The direct Rowland experirrent. 
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hand, if we 11KJve the magnetic needle with a constant velocity along the belt at rest, 

this will be the inertial inverse Rowland experiment. 

As far as I know nobody has carried out either the rotational nor the inertial 

i nvers_e Rowland experiments. 

46.2. THE EFFECT IN THE INVERSE ROWLAND EXPERIMENT IS NULL. 

Now I shall show that, contrary to the prediction of the principle of relativity, 

the inverse Rowland experiment must be null, i.e., a magnet 11KJving with respect to 

charges at rest does not experience torque. 

As the treatement of the inverse Rowland experiment has an iJll)ortant theoretical 

aspect, the formulas in Sect. 46.2 will be written in the CGS system of units. 

Thus, proceeding from the Newton-Lorentz equation (23.4), I sha 11 show that when 

there is an infinitely long (or very long) belt covered with electric charges and a 
magnet in its neighbourhood (let us consider a solenoid- feeded by constant current), 

then, in the case that the belt will be ITOVed with the relative velocity v in the 

laboratory, there wi 11 be a torque acting on the magnet at rest, however, in the 

case that the belt will be at rest and the magnet will be 1TOved with the same velo­

city v, there will be no torque. 

Let us suppose that the absolute velocity of the laboratory is V and let us con­

sider.an electric chargeq moving with the laboratory ·velocity Vm in an wire element of 

the magnet (as I showed - see Sect. 16 - vm is of the order of c). Denoting by 4' an_d 

A the laboratory electric and magnetic potentials generated by the electric charges 

fixed to the belt at the point of location of the charge q, we shall have for the 

potential force acting on this charge q, according to eq. (23.4), for the case when 

belt and magnet are at rest in the 1 abi ratory, 

F = - qgrad4' + q(vm.v;c2)grad4'. (46.1) 

As Vm = c and qvm = Idrn, where I is the current in the coil, dr is its wire ele­

ment and n is the unit vector along this wire element in the direction of the cur­

ent, we shall have 

F = - (Idr/c)grad4'(1- n.V/c) = - (Idr/c)grad4'. (46.2) 

It can be shown that this force is small with respect to the force of attraction 

due to the electrostatic induction of the charges on the belt and the induced charges on 

the metal wire of the coil. 

For the case when the magnet will be 11KJved with the relative velocity v in the la­

boratory, the acting force will be 

F' = - qgrad4' + q{(vm+v).V/c 2}grad4' = F + q(v.v;c2)grad4'. (46. 3) 

As v « c, the additionally acting force 

F' - F = q(v. V/c2 )grad4' (46.4) 
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is extrerrely small with respect to the initial force F and surely there will be no 

experirrental possibility to register it, so that we can write 

F' = F. (46.5) 

For the case when the belt will be.moved with the velocity v in the laboratory, 

the force acting on the charge q of the magnet at rest will be, taking now the labo-

ratory magnetic potential of the charges on the belt as A= <I>v/c and using in 

the last two terms of (46.6) the formulas for rotation and vector-gradient of double 

products, 

F" = - qgrad<I> + q(vm.Y/c
2

)grad<I> + (q/c)vmxrotA + (q/c)VxrotA + (q/c)(V.grad)A = 

- qgrad<I> + q(vm.V/c
2

)grad<I> + (q/c)vmxrotA + q(v.V/c 2 )grad<I> = 

( 46.6) 

Now, taking into account that v << c, we shall obtain for the additionally acting 

force 
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where B is the magnetic intensity generated by the charges rroving with the belt. 
This force is considerable and there will be a torque acting on the magnet. 

46.3. THE EXPERIMENT SUPPORTS THE ABSOLUTE SPACE-TIME CONCEPTS. 
I carried out the rotational direct and inverse Rowland experiments (fig. 23). A 

rim of a plastic disk was covered with a brass ring. This metal ring, cut over a 
small distance, was connected by a wire with the axle of rotation and this axle was 
connected by the help of sliding contacts with one pole of a Wimshurst machine which 
produced tension between both poles U = 80 kV, and I assumed that the potential to 
which the disk was charged was 4> = U/2 = 40 kV. For a detector of the magnetic field 
I took not a magnetic needle, as was the case in the historic Rowland experiment, 
but a small Hall detector whose output was led to an amplifier ending with a trig­
ger. When the trigger was overturned, it illuminated a lamp. The trigger could be 
tuned so that an increase of the magnetic intensity over the Hall detector of few 
micro Gauss the lamp was illuminated. The capacitance of the disk with radius R = 

20 cm was of the order of C = 10-ll F. 
If charged to a potential 4>, the charge over the disk will be q = C4>. At N rota­

tions in a second this charge will produce current I = qN. This convection 
from its side, will produce at a distance p (P > R) from the center of the 
following magnetic intensity (see ( 18. 6)) 

2 
B = µolR 

4(p2 -R2)3/2 

µ IR2 µ C4>NR1/ 2 o __ o ____ ~ 

4{2R(p -R)} 3/ 2 - 4{2(p -R)}3/ 2" 

current, 
disk the 

( 46.8) 

Putting here µ
0 

= 47Tl0-7, C = 10-ll F, 4> = 4xlo4 V, N = 1 rev/sec, R = 0.2 m, 
p - R = 0.004 m, we obtain B = (7T/4)10-10 T/rev = 1 µG/rev. 

When rotating the charged disk, the 1 amp became i 11 umi nated at some N = 10 rev/sec. 
However when the disk was kept at rest and the Hall detector together with its bat­
tery the amplifier, the trigger and the lamp was rotated about the disk, there was 
no light even for N = 20 rev/sec. 

Of course, because of the mechanical vibrations and the Earth's magnetism, it was 
pretty difficult to establish such a null effect and 11D' experiment, naturally, needs 
confirmation carried out in a first class laboratory. According to me, the inverse 
Rowland experiment has been not carried until now not because of technical difficul­
ties but because of a fear that the result will be null (this is also the reason that 
"rotating axle " experiments - see Sect. 44 - for measurement of the Earth's absolute 
velocity have been not carried out until now). 

The plane of the Hall detector lied in the plane of the disk. When rotating the 
Hall detector, its plane must remain exactly parallel to the plane of rotation. If 
the Hall detector will make a small angle with the plane of rotation, the lamp was 
illuminated and extinguished even when the disk was not charged, because of the 
change of the Earth's magnetic intensity over the Hall detector. This effect served 
as an indication of the sensitivity of the Hall detector. As the Earth's magnetic 
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intensity is BE= 0.5 G = Sxl0-5 T, then if the angle between BE and the plane of 
the Hall detector is e, the co1T4>onent of the Earth's magnetic intensity p rpendicu­

larly to the plane of the detector will be BEL= BEsine. Thus, fore= o, ~e = 1° 
1/5-7 rad, we shall havemE.!. = 10 rnG = 10-6 T Earth's magnetic intensity over the 
whole detector. With the increase of·e the change•mE.!. for ~e = 1° decreases. 

It is obvious that there are no technical problems for realizing also the iner­
tial direct and inverse Rowland experirnents. 

46.4. CONCLUSIONS. 
Thus the direct and inverse Rowland experirnents carried out by rne showed that the 

effects observed are not the sarne. Contrary to the prediction of 11\Y absolute space­
tirne theory and contrary to the experimental results, the theory of relativity pre­
dicts the fo 11 owing nonsense : ( 34) 

A stationary magnetic dipole (e.g., a co1T4>ass needle) in general experiences 
a torque in the presence of a moving charge, since the latter creates a B field; 
transferring our observations once more to the inertial rest frarne of the 
charge, we conclude that a magnetic dipole moving through a static electric 
field must experience a torque. 

This report on the execution of the direct and inverse Rowland experi rnents was 
published in Ref. 33. 
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47. CLASSIFICATION OF THE ELECTROMAGNETIC MACHINES (THE B-MACHINES) 

The ELECTROMAGNETIC MACHINES consist of a magnet (permanent magnet, electromagnet 

or current wire) and a coil (wire). In Sect. 29 I separated the electromagnetic ma­

chines in motors and generators with respect to the kind of forces which the machine 

produces: ponderomotive or electromotive. Then in Sect. 29 I separated the electro­

magnetic machines in B-motors and generators and in S-motors and generators with 

respect to the kind of the driving magnetic field: vector or scalar. 

Now I shall introduce a classification of the B-motors and B-generators with res­

pect to the part of the magnet's pole covered by the wire at its motion (rotation). 

Of course, in the B-machine the wire can remain at rest and the magnet can be rota­

ted, but, for definiteness, I shall always assume that the magnet is at rest and t_he 

wire moves. Formulas (21.14) and (24.6) show that for the electromagnetic machines 

with closed loops the principle of relativity holds goo~. 

1. NONPOLAR MACHINES. In these machines there is no motion of the wire at all. 

Such machines are only generators and their coil always has an iron core. A change 

in the magnetic flux through the coi 1 is caused by a respective motion of permanent 

magnets, however, current sent in the coil does not set these permanent magnets in 

motion. Such machine is llJY MAMIN COLIU machine which produces energy from nothing 

(see Sect. 53). In the non polar machines the wire covers no part of the magnet's 

poles. 

2. HALF POLAR MACHINES. In these machines the wire covers only the half of the 

magnet's pole at its rotation. Official physics calls these machines UNIPOLAR or 

HOMOPOLAR, but in 11JY classification the unipolar machines (see later) have another 

character, The typical half polar machines are the so-called BARLOW and FARADAY 

DISKS (BARLOW and FARADAY HALF POLAR MACHINES). 

In fig. 24 an OPEN half polar machines is shown: The cylindrical magnet generates 

a cylindrical magnetic field (indicated by the dashed lines). If via the sliding 

contacts a and b current is sent along the disk's radius, it comes into rotation. 

This is called the Barlow disk and the third formula (21.1) is to be used for the 

calculation of the force acting on the current elements along the disk's radius. If 

the disk will be rotated·by an external torque, at the points a and ban induced 

tension will appear. This is called the Faraday disk and again the third formula 

(21.1) is to be used for the calculation of the electric intensity induced at the 

different points of the disk's radius. 

If the disk is not solid to the cylindrical magnet, I call the Barlow and Faraday 

disks UNCEMENTED. If the disk is fixed to the cylindrical magnet and both rotate to­

gether, I call the Barlow and Faraday disks CEMENTED. Whether the cylindrical magnet 

is cemented or non-cemented nothing changes in the acting forces, as in Sect. 27 I 

showed that the torque exerted by a rectangular wire on a circular wire is null and 

N circular wires make a circular solenoid. 
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magnet 
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Fig. 24. Open half polar machine. 

- -

- -... 

In fig. 25 a CLOSED half polar machine is shown. We have, respectively, a closed 
Barlow disk and a closed Faraday disk, however now the cemented machines neither ro­
tate nor generate current. 

If current is sent in the coil, the whole coil begins to rotate and the salting 

contacts allow to make the rotation continuous. On the other side, rotating conti­
nuously the coil with the salting contacts, a direct current will be induced in it. 

3. UNIPOLAR MACHINES. Such are the machines in figs. 26 and 27, called,respecti­
vely, unipolar machines with MOLLER RING and with MARINOV RING. The character of 
the t1.iller and Marinov rings is shown schematically in fig. ·2a. 

The unipolar machine with t,'iiller's ring consists of permannet slab magnets ar­
ranged in a ring with their north poles pointing outwards. A frame consisting of 
two parallel circles, which for more clariry is drawn at the left of fig. 26, is to 
be put on the ring and then the slider ab can slide along the two parallel circles, 
the circuit being closed by the fixed wire ed. 

In the unipolar machine with Marinov's ring the same slider can continuously ro­
tate, but the pushing force will be no constant as in the Miiller's ring. In fig. 27 
a variation is shown for realizing continuous rotation of the magnets by the help 
of salting contacts; meanwhile a MUller's ring cannot_be set in rotation. 
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Coil 
d r--------1 C 

Fig. 25. Closed half polar machine. 

4. ONE-AND-A-HALF. POLAR MACHINES. This is the machine BUL-CUB analysed in Sect. 

48. The inventor of this machine is F. M.iller. ( 36) M.iller observed its electrorootive 

effects. I constructed a variation for observing also its ponerorootive effects and 

called this hybrid MACHINE BUL-CUB, an abbreviation of BULgaria - CUBa, ll1Y and MUl­

ler's native countries. 

5. TWO POLAR MACHINES. Those are alroost all electromagnetic machines which hune-

Fig. 26. Unipolar machine with MUller's ring. 



Fig. 27. Unipolar machine with 
Marinov's ring. 
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b) . 

nity builds. Here the wire covers both poles of the rragnet at its nvtion. 

In the half and unipolar machines the induced current is direct continuous. In the 

one-and-a-half polar rm.chines the induced current is direct interrupted. In the non­

polar and two polar machines the induced current is alternating. 

b b' b 

m 

' 
, 

j ' 
k 

a a' a 

a) b) 

Fig. 28. Diagrams of the Marinov and MUl ler rings. 
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48. THE ONE-AND-A-HALF POLAR BUL-CUB MACHINE 

48.1. MOLLER'S ONE-AND-A-HALF.POLAR MACHINE. 

First I would like to note that only about 10% of the physicists and electro-en­

gineers can understand the notion "SEAT OF THE INDUCED ELECTRIC TENSION", as for the 

other 90% (whom I call the "butchers") the magnetic flux is a sausage and the loop a 

knife. Indeed, official physics, considering the electromagnetic effects as "field", 

"closed lines" and "flux" effects, do not pay attention to the differential interac­

tions and to the extremely important problem about the electroirotive and ponderoroo­

tive forces exerted on the single current elements and on the single wire's elements. 

i.e., to the problem about the SEATS OF THE ELECTROMOTIVE AND PONDEROMOTIVE FORCES. 

MUller(J6) was the first physicist perhaps who tried to locate the seat of the 

electromotive forces in a couple of experiments, developing a very clever technolo­

gy(JG) which brought him to brilliant successes. Unfort~nately he has not investiga­

ted the problem about the seat of the ponderonvtive forces which is of no less im­

portance. 

The t-1lLLER'S MACHINE on which he carried out his measurements is shown in fig.29. 

The magnet is a permanent cylindrical magnet. The almost cylindrical core and the 

two-wing yoke are of soft iron. As the rotation of the cylindrical magnet and. core 

does not influence the effects observed, I shall assume that magnet, core and yoke 

are solid one to another, and further I shall call this "magneto-core-yoke" with the 

conman name "magnet". The rectangular loop abdc will be called "coil". The magnet and 

the coil can be rotated independently or together. The wires ab and bdc can also be 

independently rooved (at short distances). It is shown at the right of fig. 29 how 

t-iiller has realized this independent motion of the wires by the help of sliding con­

tacts in mercury. 

The yoke has the gaps pq and p'q' through which the coil can pass, so that a con­

tinuous rotation can be realized. At rotation of the coil outside the gaps the ma­

chine can be considered as closed half polar machine. Those are the gaps pq and p'q' 

which make it one-and-a-half polar. 

Killer observed on his machine the effects which are presented in tables 48. l and 

48.2, where "no motion" is indicated by "0" and "nvtion" ("rotation") by "m". 

First the wire bdc was outside the gaps and the measured tensions are given in 

table 48.1. 

Then the wire bdc was in the gap p'q' and the measured tensions are given in 

table 48.2. 

The motional induction in ab and de when the latter are in the gap is obvious. 

Not so obvious is the Jl'Otional-transformer induction and I needed 10 years to under­

stand thoroughly the effects in MUller's machine. I began to ruminate on the effects 

in M'Liller's machine in 1983 and even in IT!Y last experiment in 1992 with the machine 

ACHMAC(37 •38) (see also Sect. 50), which is a closed half polar machine, I gave a 
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wrong prediction( 37) and only after constructing it(JB) I saw that the prediction 

was wrong. 
But after the construction of the.machine ACHMAC all induction effects in the 

electromagnetic machines becane entirely clear to me. 

Motion or rest of 
wire ab wire bdc 

0 0 

2 m 0 

3 0 m 

4 0 0 

5 m m 

6 m 0 

7 0 m 

8 m m 

magnet 

0 

0 

0 

m 

0 

m 

m 

m 

Induced 
tension 

0 

u 
0 

u 
u 
0 

u 
0 

-Table48.l 

Kind of the induced tension 
and its seat 

motiona.1 in ab 

motiona 1-t.ransformer in ab 

motional in ab 
motional in ab 
opp. motional-transformer 
motional-transformer in ab 
motional in ab 
opp. motional-transformer 

in 

in 

ab 

ab __ ! __________ 
----------------------------------------------------------------------

d 

Fig. 29. Jliiller's one-and-a-half polar machine. 
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Table 48.2 
--------------------------------------~----------------------------------------

1 

2 

3 

4 

5 

6 

7 

8 

--

Motion or rest of 

1-1i re ab wire bdc 

0 0 

m 0 

0 m 

0 0 

m m 

m 0 

0 m 

m m 

magnet 

0 

0 

0 

m 

0 

m 

m 

m 

Induced 
tension 

0 

u 

u 

0 

0 

u 

u 

0 

---------------------------------------------

Kind of the.induced tension 
and its seat 

motional in ab 

motional in de 
motional-transformer in ab 
opp. motiona 1-transformer in 

motional in ab 
opp. motional in de 
motional in ab 
opp. motional-transformer in 
motional-transformer in de 

motional-transformer in ab 
motional in de 

de 

ab 

opp. motional-transformer in de 
moti ona 1 in ab 
opp. motional-transformer in ab 
motional in de 
opp. motional-transformer in de 

-----------------------------------

Now all is silll)le and lucid but there were so many subtleties and puzzles in the 
observed effects that for their undrestanding and revelation t1.iller has sacri fied two 
times more years than me. Our common fight for the revelation of the scientific truth 
with the contributions of rqy friends Pappas and Wesley is well documented in the se­
ries of documents THE THORNY WAY OF TRUTH. 

It is worth to elll)hasize that I discovered the motional-transformer unduction ex­
actly when analysing M"uller's and rqy experiments. The fact that this fundamental kind 
of electromagnetic induction was not revealed by humanity during 150 years of elec­
tromagnetism shows that the problem has its difficulties. Now looking from the top 
of the mountain, all seems childishly simple, but to arrive at the top crossing the 
jungle of intricated Faraday-Maxwell and wrong relativity concepts was not so easy. 
The moti.onal-transformer induction is not difficult for understanding. Every child 
has to deduce formula (21.3). But I had to discover this formula and the motional­
transformer induction with Faraday, Maxwell, Lorentz and Einstein on the shoulders. 

Newton said once that he has so easily seen the truth because he sat on the shoul­
ders of giants. But to see the truth with giants.on the shoulders is not so easy. 

48.2. THE BUL-CUB MACHINE. 

Proceeding from 11iller's llilchine I constructed rqy BUL-CUB machine with the scope 
to observe there not only the electromotive but also the ponderomotive effects. 
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The diagram of the BUL-CUB machine is shown in fig. 30 and the photographs of the 
fi.rst and second variations in figs. 31 and 32. 

The BUL-CUB MACHINE consists of a cylindrical magnet (I had an electromagnet but 
a p_ermanent magnet can also be used), a yoke of soft iron, and a coil wound as shown 
in the figures on a cylindrical core of soft iron with a cylindrical axial hole. The 
winding goes along the generatrix of the cylinder, along the radius of one of its 
bases, along the generatrix of the axial hole, along the radius of the other basis, 
and then again along the generatrix of the cylinder, tightly to the previous winding, 
until the whole cylinder is covered by windings. I note by "ab" the radial wires of 
the coil and by "cd" the parts of the cylindrical wires which "enter under the yoke". 
The coil's wires between the marginal points p and q (resp., p' and q') are "undertt-e 
yoke" and between the marginal points p and p' (resp., q and q') are "outside the 
yoke". In fig. 30 the ma911etic flux in the iron of the magnet, core and yoke is·indi­
cated by dashed lines. I assume B # 0 only in the magnet's and both yoke's- gaps. 

To calculate the electromotive and ponderomotive effects in the BUL-CUB machine, I 
take a reference frame as follows (fig.JO): The K-axis is horizontal pointing to the 
left, the y-axis is horizontal pointing to the reader and the z-axis is vertical poin­
ting upwards. 

Yoke 

p~q 

p~q' 

Fig. 30. Diagram of the one-and-a-half polar BUL-CUB machine. 
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48.3. THE BUL-CUB GENERATOR. 
The following motional electric intensity will be induced in the wires cd in the 

yoke's gap when they move with a velocity v, indicating by a subscript "yo" the quan­
tities. related to the yoke's gap and by "ma" the quantities related to the magnet's 
gap 

E = vxB = vyxBz = vBx, yo 
and the following intensity in the wires ab of the magnet's gap 

Ema= vxB = Qryx(-Bx) = nrBz, 

(48.1) 

(48.2) 

where n is the angular velocity of rotation of the coil and r is the distance of the 
wire's element from the .coil 's axis. The average electric intensity induced along the 
wires ab will be 

Ema= (nR/2)Bz = (v/2)Bz, 

where R is the radius of the coi 1 • 

( 48. 3) 

Let us assume that the cross-section of the yoke is rectangular with a sides paral­
lel to the wires and a side h perpendicular to the wires. To make the calculation 
simpler, I shall suppose h much smaller than R, consequently s much bigger than R, as 
the cross-section of the magnet's gap and of both yoke's gaps will be assumed equal 

Fig. 31. First variation of the effective BUL-CUB machine. 
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to have the same magnetic intensity in all gaps. Thus, at this assumption, the cylin­
drical surface of the coil in the yoke's gaps can be considered as a plane rectangle. 
If n wires pass through a unit of length on the circumference of the coil 's cylinder, 
we find that the length of the wire in both yoke's gaps is lyo = 2(nh)s = 2nsh, so 
that the tension induced in the yoke's gaps will be 

Uyo = f Ey0 .dlx = Eyolyo = v8(2nsh) = 2nshvB = nv<I>, 
lyQ 

(48.4) 

having taken (here and below) a positive orientation along the wire in the direction 
d-c-b-a, and denoting by <I>= 2sh8 the magnetic flux produced by the magnet. 

To calculate the induced tension in the magnet's gap, we must multiply scalarly_the 
average induced intensity (48.3) by the oriented length (positive .from b to a) of the 

2 2 · wire in the magnet's gap which is lma = n(nR)2R 2nnR = 4nsh, as nR = 2sh. Thus the 
tension induced in the magnet's gap will be 

U = / Ema· (-dlz) = - Ema lma = - 2nshvB = - nv<I>. ma 1 ma 
(48.5) 

As Uy0 and Uma are equal and oppositely directed, the motional tension induced in 
the whole coil will be null. 

The tension induced in the coil when the magnet (magnet+ yoke+ core) rotates and 
the coil is at rest, or when the magneto-yoke rotates and coil+core are at rest, can 

Fig. 32. Second variation of the effective BUL-CUB machine. The position of this 
machine corresponds to the position of t-t.iller's machine in fig. 29. 
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be found on the ground of the general theorem (21.13) that for a closed loop (as our 

coi 1) the motional and nutional-transformer induced tensions are equal. 

48.4. !HE BUL-CUB MOTOR. 

For the force acting on a unit of length of the wire in the yoke's and magnet's 

gaps we shall have 

Fyo = IxB = IxxBz = - !By, Fma = IxB = (-Iz)xBx !By. (48.6) 

The moments of force with respect to the coil 's axis, applied to a unit of length 

of the wires cd and ab, will be, respectively, 

M = Rxf = Rzx(-IBy) = IBRx, yo yo rxf = rzxIBy = - riBx, ma (48. 7) 

where R is the radius of the coil taken as vector and r is an arbitrary vector-dis­

tance a long it taken from the coil 's axis. The average nument of force applied to a 

unit of length of the wire will be 

Mma = - ( 1/2) IBRx. (48.8) 

As the length of the wires ab in the magnet's gap is twice the length of the wires 

cd in the yoke's gaps (see Sect. 48.3), we conclude that the net moments of force ac­

ting on the wires in the magnet's and both yoke's gaps are equal and oppositely di­

rected, so that the coil will not rotate. 

As the magnet (magnet+yoke) and coil (coil+core)canbeconsidered as two independent 

circuits, the force and consequently the torque with which the coil acts on the mag­

net will be the same, 

48.5. UNEFFECTIVE AND EFFECTIVE BUL-CUB MACHINES. 

Thus formulas (48.4) and (48.5), one one hand, and formulas (48.7), on the other, 

show that the BUL-CUB machine can neither generate electric tension, nor be driven 

as a motor and I call it the UNEFFECTIVE BUL-CUB MACHINE. 

To make the BUL-CUB machine EFFECTIVE, I applied to following trick: I made the 

upper parts of the wires cd naked and I put brushes in parallel to both yoke's wings, 

so that the latter short-circuited all wires which c,1re in the yoke's gaps. This 

short-circuiting can be made by a non-contact way by using magnetic anchors with 

springs (as in the electric bells) which will be attached by the yoke's wings when 

they pass over the anchors (in the case of a rotating magneto-yoke) or the anchors 

pass under the yoke's wings (in the case of a rotating coil). An elegant and indus­

trially prospective way is to make the insulation between the wires cd by a magneto­

resisting material, so that the short-circuiting of the wires cd will be made by the 

magneic field in the yoke's gaps. One must find a material with an optimal ratio 

R0 /Ra, where R0 will be the resistance for B = 0 and Ra for B ;. 0. If this problem 

can be solved technically, the BUL-CUB machines can win the corrpetition with the 

other d.c. machines, as it has no collector and for the case of. a coil at rest no 
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sliding contacts at all, 

My BUL-CUB generator with naked cd-wires is shown in fig. 31, driven by an elec­

tromotor: the produced continuous d. c. tension is taken from the two rings on the 

axl_e by the help of sliding contacts. If the coil should be at rest and the magneto­

yoke should be rotated, no sliding contacts for taking the generated tension are 

needed. 

If the driving motor in fig. 31 will be taken away and d.c. will be sent to the 

coil via the sliding rings, the coil has to begin to rotate. In ny machine shown in 

fig. 31 the torque was so feeble that it could not overwhelm the friction and for 

this reason I constructed the second variation shown in fig. 32 where the wires of 

the coil are in sections which are led to a collector and the brushes which make the 

short-circuiting of the cd-wires slide on this collector. In the ','.ariation in fig. 

32 the coil is fixed to the magnet and only the yoke can rotate on ball-bearings. 

The coi 1 is connected in series with the magnet's con and the common current _is 

sent via the vertical supports of the coil+magnet, so that when sending current the 

yoke with the short-circuiting brushes which are attached to it begins to rotate. 

The detailed report on ny BUL-CUB machine is published in Ref. 6, p. 132. 

49. THE DEMONSTRATIONAL CLOSED HALF POLAR FARADAY-BARLOW MACHINE (FAB) 

To be able to clearly determine the seats of the electromotive and ponderomotive 

forces, I constructed the closed half polar machine, the diagarm of which is given in 

fig. 33 and the photograph in fig. 34. I called this the DEMONSTRATIONALFARADAY-BAR­

LOW MACHINE (FAB), as the Faraday and Barlow disk of the open half polar machine is 

its fundamental element. 

The machine has three parts which can rotate independently one of another: 1) the 

rragneto-yoke consisting of two ring magnets and yoke of soft iron, 2) the Faraday­

Barlow disk of soft iron, and 3) six bar conductors of aluminium crossing the yoke 

through holes large enough, so that a limited motion of the bars with respect to 

the yoke (and vice versa) can be realized. The yoke rotates on the first and third 

small ball-bearings, the disk rotates on the second small ball-bearings, and the 

bar conductors rotate on the middle and on the big ball-bearings (the inner race of 

the big ball-bearing is solid to the Faraday-Barlow disk). 

The current (when the machine is used as a motor) goes from the positive elec­

trode of the battery through the second small ball-bearing, crosses the disk, the 

big ball-bearing, the bar conductors, and through the middle ba 11-beari ng reaches 

the negative electrode. The bars can be made solid to the magnet by the help of a 

plastic "cap" shown on the left of the diagram. The magnet can be made solid to the 

disk by the plastic "spoke" shown in the upper part of the drawing. The bars can be 

made solid to the disk by the help of the plastic "cap" shown in the lower part of 

the drawing which blocks the big ball-bearing. The disk can be made solid to the 
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lab by the help of a "spoke" (not shown in the figure!) which blocks the second small 
ball-bearing. The magnet and the bar can be made solid to the.lab by hand. The ef­
fects observed are presented in table 49.1. 

Table 49.1 
-----------------------------------------------

Rotation or possibility GENERATOR EFFECTS MOTOR EFFECTS 
for rotation of: Induced kind of seat of torque reaction 

Disk Bars Magnet tension induction induction on the on the 
--------------------------------------------------------- - ------------------

1 0 0 0 0 0 

2 m 0 0 u motional disk disk magnet 

3 0 m 0 0 0 

4 0 0 m u mot.-tr. bars magnet disk 

5 m m 0 u motional disk disk magnet 

6 0 0 
motional disk 0 m m opp. mot.-tr bars 

7 0 m m u mot.-tr. bars magnet disk 

0 motional disk 0 8 m m m opp. mot.-tr bars 
-----------------------------------------------------------------------

~Magnet 

- Plastic 

~ Iron 

~ Aluminium 

Fig. 33. Diagram of the demonstrational closed half polar Faraday-Barlow machine. 
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When conparing table 491 with table 481, we see that the tensions induced in the 

different cases are exactly the sane. There are differences only in the seats 

of the induced tensions, nanely in the seats of the induced rootional-transfo~rret ten­

sions. 

For the cases 4,6,7,8 the seat of the induced notional-transforrrer tension in 

MUller's machine is in the wire ab, while in FAB it is in the bars (which correspond 

to the wire bdc in MUller's machine). 

Why this difference does appear? - Assuming that the holes through which the bars 

cross the yoke are very small, we see that the field of the magnetic potential across 

the disk has an absolute cylindric syrmetry. Such a cylindrically symrrrnetric magnetic 

potential field cannot induce rrotional-transforner tension at rotation of the magnet. 

In the "limiting case" of MUller's machine, we can consider the yoke as very slim, 

and in such a case the field of the magnetic potenti a 1 across th.e gap between the 

magnet and the core becones highly asymnetric. This 1eads to the induction of motio­

nal-transforner tension for the case where the magneto-yoke, or· only the yoke, in 

fi g. 29 rotates • 

The seats of the induced motional-transforner tension in tables 48.1 and 49.1 are 

given for the two l i mi ting cases: a very s 1 i m yoke in fig. 29 and a cyl i ndri cal yoke 

in fig. 33. For a yoke between these two extremities there wi 11 .be rroti onal-trans­

forner induction both in the disk (wire ab) and in the bars (wire bdc). 

Very interesting is case 7 in table 49.1. Here, at a continuous rotation of the 

. magnet and the bars, a constant tension is generated, although the seat of this ten­

sion is in the bars where the magnetic intensity Bis equal to zero. 

The last fact can be patently seen when we conpare cases 6 and 7: the rotation of 

Fig. 34. Photograph of the demonstrational Faraday-Barlow machine .. 
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the bars is immaterial for the tension .induced in the bars, of illllortance is only 

the rotation of the magneto-yoke which leads to a continuous change of the magnetic 

potential in the reference point taken with respect to the laboratory (absolute 

space)~ not with respect to the bars, as the magnetic potential in the bars for co­

moving bars and magneto-yoke remains constant. 

For the relativity blind all these deductions and considerations will be a Chinese 

grammar, but as Marx considered Hegel's dialectic as "the algebra of revolution", so 

they have to begin to consider equations (21.1) - (21.4) as "the algebra of induc­

tion". 

The report on 111}' demonstrational Faraday-Barlow machine was published in Ref. 39. 

50. THE ANTI-DEMONSTRATIONAL CLOSED HALF POLAR MACHINE ACHMAC 

The mentioned in Sect. 48.1 differences between tables. 48. 1 and 49. 1 became entire­

ly clear to me only after the construction of the machine ACHMAC.(37, 38 ) 

I thought that the magnetic intensity and magnetic potential fields in the gap of 

the closed half polar machine shown in fig. 25 preserve their cylindric symmetry re­

levant for a very long circular, or even toroidal, solenoid. Thus, I thought, that at 

at rotation of the magnet in fig. 25, a motional-transformer tension can be induced 

only in the wire de of the coil when it is near to the magnet. But when it is far 

from the magnet (as in fig. 25), a motional-transformer tension cannot be induced. 

~ magnet9 accumulator 

t2:Z2I iron 

rs:s:sJ plastic (PVC) i c:::J brass 

Fig. 35. Diagram of the anti-demonstrational closed half polar machine ACHMAC. 
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This, of course, is true, but I did not expect that motional-transforner tension 
will be induced also in the wire ab. Thus I came to the conclusion that by rotating 
the whole system in fig. 25 about the axis, a tension will be induced in the coil. 
And_ I expected further that by sending current in the coil, the whole rigid system 
will begin to rotate, as a torque wil'l act on ab but no reaction will act on the 
magnet. 

Although all this seened highly incredible, I constructed the MACHINE ACHMAC 
(Autonomous Closed Half polar MAChine) to see which will be the answer of the Divi­
nity. The diagram of the machine is shown_ in fig. 35 and the photograph in fig. 36. 

As neither tension was generated nor torque was observed, I understood that the 
magnetic intensity and magnetic potential fields in the gap in fig. 25 have no cir­
cular syrmetry, so that, on one side, there will be motional-transforner tension in­
duced in the disk's radius and, on the other side, a current going along the- disk's 
radius and the axial wire will exert a torque on the·magnet. 

The construction of the machine ACHMAC and its expected ( ! ) functioning is clear 
from the figures. I do not enter into these deteil here, as the machine has not de­
monstrated the expected effects. For this reason I called the machine "anti-demon­
strati ona l ". 

I should like to add that an eventual rotation of the machine ACHMAC was expected 
also proceeding from the speculation that there is no a theorem asserting that the 
net torque of interacting closed current loops must be null (see in Sect. 24 the 

_text after formula (24.6)). Thus the _machine ACHMAC is one more experinental sup­
port in favour of this (quite sure!) theorem for the case when closed loops are in­
volved (see in Sect. 63 the violation of this theorem for open current loops). 

Fig. 36. Photograph of the machine ACHMAC. 
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51. THE DEMONSTRATIONAL UNIPOLAR MARINOV-MOLLER MACHINE (MAMUL) 

If we wish that the students can quickly grasp the essence of electromagnetism, 
the demonstrational Faraday-Barlow machine must be available in every college. 

Another such didactic machine is the unipolar MARINOV-MOLLER MACHINE (MAMUL) 
which I have constructed (fig. 37). I gave to it Miller's name, as its essential 
part is the magnetic MUller's ring (see fig. 26) on which Miller has carried out ma­
ny induction experiments allowing to clear the problem about the seat of the induced 
tensions (see Ref. 6, p. 239), and ll1Y name, as with this MUller's ring I did ponde­
romotive experiments allowing to clear the problem about the seat of the ponderomo­
ti ve forces. 

The machine MAMUL is constructed and functions as follows (fig. 37): 
On a metal axle four ball-bearings are mounted. A "magnetic belt", i.e., a magne­

tic MUller's ring, consisting of many slab magnets with.a square cross-section and 
arranged tightly one to another with their negative poles pointing to the axle, is 
mounted on the outer races of the external bearings. The outer races of the internal 
bearings are connected with metal sticks. One can also connect the outer races by a 
metal cylinder but the sticks are more convenient from a didactic point of view. The 
axle on which the ball-bearings are mounted consists of two electrically i·nsulated 
pieces. The electric circuit goes to the left axle piece, crosses the left internal 
ball-bearing, the sticks, the right internal ball-bearing and goes out from the 
right axle piece. The external wires of the circuit contain an amperemeter if elec­
tromotive effects are to be observed or a battery if ponderomoti ve effects are to be 
observed. In this experiment the ball-bearing motor effects based on the current 
thermal dilatation effect (see Sect. 63) will be neglected. 

The machine shows the following electromotive effects: 
1) When rotating the metal sticks keeping the magnetic belt at rest, an elecric 

intensity is induced in the sticks according to the third formula (21. 1) for the mo­
tional induction and current flows through the amperemeter. 

2) When rotating the magnetic belt keeping the sticks at rest, no current flows 
through the amperemeter, as in such a case the motional-transformer induction is ze­
ro. Indeed, at the rotation of the magnetic belt no changes in the magnetic potential 

generated by the magnets do appear as in a cylindrical reference frame with axis 
along the axis of the cylindrical belt the magnetic potential does not depend on the 
azimuthal angle ¢. As in such a frame the components of the velocity of the belt 
will be v = (vp, v¢, v2 ) = (0, v, 0), we obtain for the motional transformer induc­
tion according to formula (21.4) 

Emot-tr = (v.grad)A = {vpa/ap + (v¢/p)a/a¢ + v
2

a/az}A = (v/p)aA(p,z)/a¢ = o. (51.1) 

3) When belt and sticks rotate together, the same current as in the first case 
flows through the amperemeter because this case is a superposition of the cases 1) 
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an.d 2 ). 

The. machine shows the following ponderorrotive effects when sending current through 

the sticks by the help of external battery: 

1) When the external bearings are blocked and the internal are free to rotate, 

the sticks are set in notion. The effect is described by the third formula (21.1) 

if putting there v = ldr/q, where I is the flowin·g current, dr is the current ele­

ment of the stick pointing along the current, and q are the charges transferring 

current in this current element, so that Emot is the potential force acting on the 

wire element dr. 
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Fig. 37. Diagram of the demonstrational unipolar Marinov-M.iller machine. 
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2) When the internal bearings are blocked and the extemal are free to rotate, 

the magnetic belt does not conE into motion. This case is rather complicated to be 

explained by a simple formula as one must make integration of the elenEntary poten­

tial forces acting on all current elements of the magnet caused by~ current ele­

ments of the circuit (not only by the current elements of the sticks). Thus I am im­

pelled here_ to use the Faraday-Maxwell language with the "force lines" which I defi­

nitely consider of having no physical substance. In Tl1Y concepts, I repeat, the force 

lines are a "model" alowing an easier, if not calculation, at least evaluation. The 

right and exact calculation is to be done only proceeding from the current elements 

of the interacting systems. The consideration of the "force lines" as physical rea­

lity was a desastrous trend in physics. But at s_ituations where the magnetic systems 

are complicated and it is difficult to make an integration, one has no other choice 

than to search for an explanation of the observed effects by the help of the "force 

lines". 

For simplicity I shall consider the "outer circuit" as wires representing continu­

ations of the sticks to the left and to the right to infinity (see fig. 37). I have 

drawn in fig. 37 one of the force lines of the magnet along which the magnetic inten­

sity is tangential to the line. As this force line acts on the current in the stick 

and on its continuation with a force perpendicular to the current and to the _line, 

the force F1 acting on the stick will point to the reader for current flowing from 

left to right and the force F2 acting on the "continuation" wi 11 point from the rea­

der. As the same number of lines cross the whole horizontal wire downwards and then 

upwards, the net moment of force acting on the whole wire with respect to the axis 

of rotation will be zero. According to Whittaker's formula (24.3), the current in 

the wire acts with the equal and oppositely directed forces on the force line. Con­

sequently the net moment of force acting on the force lines, i.e., on the magnet, 

will be zero. I repeat, it is an absurdity to think that a pressure can be executed 

on the force lines. The forces are always acting on the current elements of the mag­

net. The substitution of the action over the current elerrent by an action over the 

force lines is only a "mnemonic trick", nothing else. Everybody who seraches here 

something more than a mnemonic trick enters into the realm of fictions. Every physi­

cist has strictly to evade to do this. 

God always has been presented by the help of idols. But anyone who begins to be­

lieve in idols soon, very soon, becomes a sinner. 

3) When the external and internal bearings are free to rotate, the sticks come 

into rotation as in case 1), but the magnetic belt remains at rest. If the outer ra­

ces of the external and internal bearings are solidly fixed, both sticks and belt 

come into rotation exactly as in case 1). 

This report on the demonstrational Marinov-MUller machine was published in Ref. 

40. 
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52. THE OPEN HALF POLAR MACHINE ADAM 

Bruce de Palma(4l) reported of having observed that the mechanical braking power 

of a cemented Faraday disk (see Sect. 47) is less than the generated electric power. 

Many people have then reported of having observed this effect too, and some of ha­

ving not observed. 
To check whether these claims are real, I constructed lllY MACHINE ADAM (Apparatus 

Discovered in Austria by Marinov) which was a cemented Faraday disk as generator. 

coupled with a rrotor invented by me, to which I gave the name the KUNIG-MARINOV MO-

TOR, as it was a deve 1 opment of the historic Konig apparatus. ( 
42

) . 

The diagram of the machine is shown in fig. 38 and the photograph in fig. 39. 

The cemented Faraday disk, which has two permanent ring magnets, is above, the 

Konig-Marinov machine, which has an electromagnet, is beneath. The electromagnet 

with the axle of the apparatus is solid to the. laboratory. The yoke of the Konig­

Marinov machine, to which the Faraday disk is solid, can rotate on the two ball­

bearings. 

- Insulator 

Fig. 38. Diagram of the open half polar machine ADAM. 
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Let us see first how the machine works as a nDtor, supplying a driving tension 

to it as shown in fig. 38. The current goes from the positive electrode up through 

the large upper mercury trough, then along the radii of the disk (which now serves 

as a B~rlow disk), then down through the small mercury trough, and reaches the ne­

gative electrode. It is easy to see that· the torque will be anti-clockwise (if lo-

oked from above), while the torque on the yoke will be clockwise. Thus the ma-

chine will rotate in this direction in which the torque is stronger. 

Let us then see how the machine works as a generator, rotating it by an external 

torque (I used a boring machine as shown in fig. 39). If the torque is anti-clockwise, 

the Faraday disk will drive the positive charges to the positive electrode, while 

the Ki:inig-Marinov machine will drive the positive charges to the negative electrode." 

Thus current will flow in this direction in which the induced tension is stronger. 

In l11Y machine the stronger tension was induced in the Faraday disk and thus when 

rotated by an external torque the _tension induced in the circuit was the difference 

between the tensions induced in the Faraday disk and in the Ki:inig-Marinov machine. 

The idea. of the machine was to run it as a perpetuum nDbile if the driving torque 

produced by the Ki:inig-Marinov machine would be nDre than the sum of the braking mag­

netic torque produced by the Faraday disk generator and the friction torque. 

Fig. 39. Photograph of the machine ADAM. 
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The experirrents carried out with the machine ADAM were the following: I set the 
machine in motion with a certain definite angular velocity and I neasured the coast­
down times once when the circuit was open and current was generated and then when 
the.circuit was closed. Because of the produced heat energy, due to the ohmic losses 
in the circuit, according to the energy conservation law, in the second case the 
coast-down tirre must be shorter. 

With my solid Faraday disk of copper, the coast-down tines in the second case were 
always shorter and thus it was not possible to say whether energy was produced from 
nothing. 

However, I exchanged the copper Faraday disk by a disk filled with rrercury. With 
such a liquid Faraday disk I neasured coast-down tines at a closed circuit longer 
than the coast-down times at open circuit. This was a clear indication that energy 
was produced from nothing (see the data in Ref. 6, p. 324). The differences; however, 
were too small, and in 1985 I took the decision that·it will be extrerrely difficult 
(perhaps impossible, because of the big heat losses) to "close the energetic circle" 
and to make ADAM or another similar machine runnig as a perpetuum mobile. Thus since 
1985 I have no more experimented with cemented Faraday disks but I follow actively 
the experinental activity of other researchers (Bruce de Palma, whom I visited in 
1985 and then invited twice at conferences in Europe, the Di.llingen group, Tewari, 
etc.). 

According to my concepts, whether the Faraday disk is cemented or uncemented, no­
thing changes in the appearing erectromagnetic forces. Thus, according to me, the 
observed violation of the energy conservation law is due to the "mechanism" of gene­
ration of current in the rotating disk and to the transmission of the ponderomotive 
forces acting on the generated current to the "ions' lattice" of the bulk metal. And 
my experiments showed that if the current is generated not in solid but in liquid 
metal, the braking mechanical effect is less. 

The detailed report on my machine ADAM (which is now sold in England) is published 
in Ref. 6, p. 324, but between the hundreds of constructors of cemented Faraday disks 
(or N-MACHINES, according to de Palma 's terminology) there is no single one who has 
done his Faraday disk of mercury except me. 

53. THE NONPOLAR MACHINE MAMIN COLIU 

The Faraday disk generator is a machine with generator and motor effects but there 
are suspicions (confirmed by me only for the case of a liquid Faraday disk) that 
when used as generator the produced electric power is more than the appearing braking 
mechanic (f.e., "ponderal") power. 

My nonpolar MAMIN COLIU MACHINE (MArinov's Motional-transforner INductor coupled 
with a Llghtlj rotating Unit) is a generator without motor effect,. so that when the 
machine generates electric power the braking mechanic power is zero. 
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I constructed six variations of MAMIN C0LIU (their diagrams and photographs are 

given in Ref. 43, p. 84), but I was unable to "close the energetic circle" and to 

run it as a perpetuum mobile (the reasons are given beneath). 

The explanation why a violation of the energy conservation law appears in the MA­

MIN C0LIU machine certainly is to be searched in the non-linear character of magne­

tization o_f iron (see beneath). 

The scherre of the MAMIN C0LIU machine with toroidal yoke (the first four varia­

tions were with toroidal yokes) is shown in fig. 40 and with cylindrical yoke (the 

last two variations were with cylindrical yokes) in fig. 41 which was the drawing 

serving for the construction of the fifth rodel (MAMIN C0LIU V). The photograph of 

MAMIN C0LIU Vis given in fig. 42 and MAMIN C0LIU V dismounted is shown in fig. 43. 

I shall give the principle of action referring to fig. 40 which is the most simple. 

In the gap of a torus of soft iron with perrreability µ there are two similar disks 

consisting of an equal number of sectors of axially magnetized magnets. In the space 

between the sectorial magnets there are sectors of non-magnetic material (in ll1Y first 

~-

Fig. 40. Principal diagram of the nonpolar machine MAMIN C0LIU. 
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variations I used bronze). The one disk is solid to the torus and the other can be 
rotated by an electromotor. When the sectorial magnets of the rotating disk overlap 
the bronze sectors, there is a certain magnetic flux <l> in the torus and when the 
sectorial magnets overlap the solid sectorial magnets, there is another flux <l>' in 
the torus. Because of the changing magnetic flux, a tension is induced in the coil 
and if short-circuiting it, current flows. However, if sending current to the coil, 
because of the COJll)lete symrretry (nonpolar machine), there is no motion of the ro­
tor. 

To make sorre simple calculations, let us suppose that the half of the rotor and 
of the solid disk is a permanent magnet and the other half bronze and that the to~ 
rus has a very large radius. To make the analysis still more pure, let us consider 
the two half circular magnets as electromagnets generating magnetic tension Um eve­
ry one. 

According to formula (20.11), when the rotating magnets overlap the stationary 
bronze sectors, the magnetic flux generated by any of them wi 11 be <1>1 = UmfRm, 
where Rm is the reluctance of the torus and is given by formula (20.13), so that the 
common flux will be <l> = 24'1 = 2UmfRm. When ttie rotating magnets overlap the statio­
nary magnets, their common magnetic tension will be 2Um and the generated magnetic 
flux will be <l>' = 2UmfRm = <l>, if Rm will remain the sarre. However in the second case 
the magnetic intensity in one half of the torus will be higher and in the other much 
lower (in the ideal case equal to zero). Asµ depends in a very complicated way on 
the magnetic intensity, the reluctance Rm (see formula (20.13)) does not remain con­
stant and <l>' f 4'. This difference in the magnetic fluxes leads to the induction of 
electric tension in the coil. I even can not say whether <l> or <l>' is larger, I rrea­
sured only induced tension and induced current and I noted that this induced current 
has no braking action (i.e., zero Lenz effect - see Sect. 54.2). 

The electric tension generated in VENETIN COLIU VI reached at high velocities of 
the rotor 50 V. Because of the complete symrretry of the system (see fig. 41), the 
current induced in the coil could not produce a torque on the magnets. Thus the elec­
tric power generated by the ·coil was produced from nothing. 

As I used magnets whose hysteresis loop was not an ideal rectangle, there was a 
feeble torque acting on them when~ current was sent in the coil because the ma­
terial of the magnets with a differential perrreability (see fig. 3) different from 
unity introduced certain assyrretry. But if the magnets should be ideal, say, elec­
tromagnets, no torque can appear. 

In figs. 41 and 42 one sees how have I neutralized the attractive and repulsive 
forces between the magnets in the stationary and rotating disks (the four rotating 
magnets and the two stationary magnets are _clearly seen in fig. 43). For this aim 
I added another system of stationary and rotating disks with permanent magnets (above 
in fig. 41) identical to the initial system of stationary and rotating disks genera­
ting the variable magnetic flux (below in fig. 41). The ·upper system serves only to 
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balance the forces between the permanent magnets in the lower system, as when the 

upper magnets attract one another the lower magnets repel each other (and vice ver­

sa). So the axle rotates very easily and a small 6-volt motor (see it in fig. 42 on 

the top) smoothly rotates the axle. 

In the machine MAMIN COLIU VI both systems of stationary and rotating magnets are 

"in the iron" and th us both sys terns generate vari ab 1 e magnetic flux (fig. 44). Here 

Long (ste•dy) magnets Short (rot•tfog) m•gnets 

Coil' s output • 

Fig. 41. Diagram of the machine MAMIN COLIU V. 
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Fig. 42. Photograph of the machine MAMIN COLIU V. 
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the a.c, output is sent directly to a coil which attracts and repulses synchronously 
the four small permanent magnets fixed to the rotor and at sufficient output power 

will rotate the machine eternally. 
Unfortunately I had laminated iron only in the second and fourth variations where 

the toroidal form of the yoke led to other asymmetri ca 1 effects. MAM IN C0LIU V and 
VI were with a perfect cylindrical symmetry, but I had no money to make the yoke de­
prived of eddy currents (by using laminated iron, or ferrite, or the material coro­
vac of the company VACUUMSCHMELZE) and the current produced was very low (milliam­
peres), so that the power was not enough to run the driving motor. This was the only 
reason which did not allow me to run MAMIN C0LIU as a perpetuum mobile. 

Exhausting thoroughly ny financial resources with the construction of the six va­
riations of MAMIN C0LIU, I interrupted in 1988 the construction of this type of ma-

. chines fcir the.time when enough money will be available. 
Thus if the iron in MAMIN C0LIU would be deprived of· eddy currents, the generated 

output power, after rectification, can be sent to the driving motor as shown in fig. 
42, and the machine can be run as a perpetuum mobile. I repeat once more, the reason 
that I could not do this was only one: the lack of money. 

I publish·ed the description of MAMIN C0LIU in two paid advertisments( 44•45l, how­
ever nobody in the world tried to construct this simple machine and to see that it 
has generator effect but ~ motor effect. 

In comments to the second adverti sment, S. A. Hayward wrote ( 46) that I am a "mad_ 
scientist". Perhaps Mr. Hayward was right, as only a mad man can publish the exact 

Fig. 43. The machine MAMIN C0LIU V dismounted. 
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description of a perpetual ootion machine by paying 3.942 English pounds, instead 

to use this noney for its construction. Only after publishing the advertiserrents, 

read the following words of Gorgias (483-380): "Nothing can be known at.all; and if 

it ~ould be knai/n, it cannot possibly be communicated; and if it could.be co1T111unica­

ted, it will never be understood or believed" and concluded that two millenia have 

changed nothing in human mind. 

Fig. 44. Photograph of the machine MAMIN COLIU VI. 
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54. THE TWO POLAR MACHINE VENETIN COLIU 

54.1. INTRODUCTION. 

In 1990 Manuele Cavalli and Bruno Vianello, who have read in an Italian magazine 

about ·ITtY electromagnetic experiments and machines, invited rre to visit them and to 

discuss the matter. I started immediately with pleasure for their town Treviso "-ln 

dem L(lJ1d wo d-le. Z.lt!Lone.n b.Wh'n" and after having spent a couple of days in their 

and their charming wives' company, I left them the machine MAMIN COLIU VI, which I 

took with me (25 kg) to derronstrate the effects, as they promised to dedicate tirre 

and money for its further development. 

Having done their own measurements on VENETIN COLIU VI and on other e lectromagne­

ti c generators, they inforrred l11Y of having found sorre generators which not only that 

have no magnetic braking torque, but when generating current obtain, at certain con­

ditions, a torque supporting the rotation. 

These generators were not specially constructed: Cavalli and Vianello observed 

the self-accelerating effect first in the Bosch ignition coils which produce the 

electric alternating tension activating the high voltage used for ignition of the 

sparks in the benzine car cylinders (I give the whole description of these generators 

to show the dinosauric character of today's technology), then in stepper motors. 

After doing measurements on the generators suggested by Cavalli and Vianello and 

then on similar generators constructed by me, I understood that every electromagnetic 

generator diminishes its braking magnetic torque when its phase angle¢ (see beneath) 

approaches n/2. This character of the electromagnetic generators can easily be ex­

plained and calculated. The effect of changing the braking torque to supporting 

torque, with the increase of the current frequency, is not so clear and needs rrore 

profound theoretical and experimental analysis. 

I decided to call any generator working with¢ near to n/2 and losing its braking 

torque the VENETIN COLIU MACHINE (in Italian NICOLINO VENETO), throwing in this way 

a bridge to the generator MAMIN COLIU where there is no braking magnetic torque at 

any velocity of the rotor (i.e., at any current frequency). The term "VENETIN" comes 

from "Veneto", the Italian province where Cavalli and Vianello live. 

In the last years I have no more experimented with MAMIN COLIU and dedicated my 

whole time and scarce money to VENETIN COLIU, as it seerred to me that it was easier 

to construct a VENETIN COLIU machine with a closed energetic circle, i.e., to run it 

as a perpetuum rrobile. 

The story of l11Y contacts with Cavalli and Vianello (with many photographs) is 

well documented in Ref. 47, p. 8. 

54.2. THEORETICAL BACKGROUND. 

Let us consider the roost ordinary two polar generator (later an example will be 

given) in which a magnet performing periodic motion generates in a coil at rest a 

tension 
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Ugen = Ugen-maxsin(wt). (54.1) 

where Ugen-max is the maximum value of the generated tension, w = 2rr/T is its cir­

cular frequency and Tis the period of motion of the magnet (the tifll! in which it 

returns to its initial state). 

Putting (54. 1) into (19.15), we shall have 

Ugen-maxsin(wt) = RI + L(dI/dt), (54.2) 

where R is the resistance· of the coil, Lits inductance and I the flowing current. 

This is a differential equation with respect to I and the solution can be searched 

in the form 

I = Imaxsin(wt - ,p), (54.3) 

where Imax and <j> are two positive (as we shall see later) constants. 

Indeed, substituting (54.3) into (54.2), we obtain 

Ugen-maxsin(wt) = Rimaxsin(wt - <Pl+ Llmaxcos(wt - 4>). (54.4) 

This equation can be written in the form 

(Ugen-rra/Imax)sin(wt) = (Rcos<j> + wLsin<j>)sin(wt) - (Rsin<j> - wLcos,p)cos(wt). (54.5) 

Obviously it must be 

Rsin<j> - wLcos,p = O, (54.6) 

so that 

tan<j> = wL/R (54. 7) 

and 

(54.8) 

The quantity 
z = (R2 + w2L2)1/2 (54.9) 

is called IMPEDANCE of the circuit and wL is called INDUCTIVE REACTANCE. 

The quantity 

<P = arctan(wL/R) = arccos(R/Z) (54.10) 

is called PHASE ANGLE and shows the angular delay in radians with which· the maximum 

of current appears after the maximum of the generated tensfon. As T is the period of 

the generated tension, then tt = (<P/2rr)T = ,P/w is the tifll! after which the maximum 

of the current appears after the maximum of the generated tension. 

Let us consider the most simple generator consisting of a solenoidal coil and a 

permanent magnet which will be pushed in the coil and then pulled out (figs. 45 and 

46). In fig. 47 I give the generated in the coil magnetic flux cl>, when it has a co­

sinusoidal.character. Such a character of the generated flux can be obtained ifwe 

assufll! that at the farthest position- of the magnet the flux .in the coil is zero, at 

the nearest position when the magnet points with its north pole to the coil, it is 

maximum positive, and that when reaching again the farthest position after half of 



- 204 -

the period, we turn round the magnet morrentarily, so that during the second half of 

the period it faces the coil with its south pole. 

The tension generated in the coil is to be calculated from the formula (19.14) 

u = - a<1>/at gen (54.11) 

and to have the generated tension (54.1), the magnetic flux must be a cosinusoidal 

function of time 

(54.12) 

In fig. 47 I have chosen R = 1 n, L = 13 n, so that, according to formula 

(54.8) 

!max= ugen-ma/(l + w2L2)1/2 = 0.5Ugen-max' (54.13) 

and according to (54.2) we obtain for the amplitudes of the ohmic and induced ten­

sions 

umax = RI max = 0.5 ugen-max,. 

Uind-max= Llmax = (l 3/ 2 )Ugen-max = O.B?Ugen-max· (54.14) 

Thus equation (54.4) can be rewritten in the following form, giving the graphs of 

Ugen' Uind and u, 

Ugen-maxsin(wt) - 0.87Ugen-maxcos(wt - cj,) 0.5Ugen-maxsin(wt - <P). (54.15) 

The phase angle has the value 

s 
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Fig. 45. The polarity obtained by a cylindrical coil when a.permanent magnet 
is pushed in and pulled out. 
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cp = arctan(wL/R) = arctan/3 = 1.05 rad = 60°. (54.16) 

The positive current in fig. 47 (i.e., the current above the x-axis) produces 

south pole at the upper end of the coil in fig. 45, and the negative current produ­

ces north pole. 

The motion of the magnet is as follows: 

a) during the time t1-t2 a push 110tion with the south pole pointing to the magnet, 

b) during the time t2-t3 a pull rotion with the south pDle pointing to the magnet, 

c) during the time t3-t4 a push motion with the north pole pointing to the magnet, 

d) during the time t 0 -t1 a pull motion with the north pole pointing to the magnet. 

If at a given roment the magnetic action of the current flowing in the coil oppo-

ses the nntion of the permanent magnet, I call this MOMENTARY LENZ EFFECT; if how­

ever it supports the motion of the permanent magnet, I call this MOMENTARY ANTI_-lENZ 

EFFECT (if precision is necessary, the Lenz effect ~ill be called also NORMAL Lenz 

effect). The effect of opposing (supporting) the rotion of the permanent nBgnet for 

the whole period of motion is called INTEGRAL LENZ EFFECT (INTEGRAL ANTI-LENZ EFFECT). 

If for the whole period the motion of the magnet is neither opposed nor supported, 

I call this INTEGRAL ZERO LENZ EFFECT. The MOMENTARY ZERO LENZ EFFECT appears when 

the current in the coil is zero. 

Fig. 46. Photograph of ny big cylindrical coil and strong permanent bar magnet. 



Let me note that if there will be a condenser with capacitance C inserted in se­

ries in the circuit, we have to use not the differential equation (19.15) but the 

differential equation (19.21). Now putting (54.1) into (19.21), we shall have 

Ugen-maxsin(wt) =RI+ (1/C)f!dt + L(d!/dt). (54.17) 

Searching again the solution in the form (54. 3), we shall have 

Ugen-maxsin(wt) = Rimaxsin(wt -<P) - (1/wC)Imaxcos(wt -.p) + wLimaxcos(wt -.p). (54.18) 

This equation can be written in the form 

(Ugen-ma/Imax)sin(wt) = 

{Rcos<P + (wl - 1/wC)~n.p}sin(wt) - {Rsin.p - (wl - 1/wC)cos.p}cos(wt). 

\ 

\ 
\ 

/ 

I 
I 

I 

(54 .19) 

/ 
I 

Fig. 4 7. Graph of the generated in the coi] magnetic flux <I>, of the generated tens ion 
Ugen• of the self-induced tension Uind, of the ohmic tension U, and of the 

current I (at the assumption R = 1 n). 
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Now the phase angle wi 11 be 

tanq, (wl - 1/wC)/R 

and the impedance 

Z = {R2 + (wl - 1/wC)2} 1/ 2 . 

The quantity 1/wC is called CAPACITIVE REACTANCE. 

For 

wl - 1/wC = 0, i.e., for 

(54.20) 

(54.21) 

w2 = 1/LC (54.22) 

there is the so-called RESONANCE: the impedance is equal to the resistance, Z = R, 

and the phase angle is zero, .p = 0. 

54.3. HOW THE ANTI-LENZ EFFECT CAN BE DEMONSTRATED BY AN AMPEREMETER. 

One can very easily deroonstrate the 11Drrentary anti-Lenz effect, i.e., one can de­

monstrate that at certain moments the current induced in the coil supports the IID­

tion of the magnet and does not brake it, as Lenz( 481 generalized in 1834 formula­

ting his fa11Dus LENZ RULE. 

I made such deroonstrati ons ( see figs. 48 and 49) with my big coi 1 which has 

140,000 turns of wire with thickness 0.3 mm, ohmic resistance R = 20,000 Q and induc­

tance L = 3,700 H. My permanent magnet was of neodymium (VACODYM 335) produced by 

the plant Vacuumschrrelze in Hanau, Germany. This was a cylindrical magnet with dis­

meter 3 cm and length 10 cm. 

First I registered the generated tension by a d.c. voltrreter when pushing and 

pulling the permanent magnet. The pointer of the voltrreter always "followed" the mo­

tion of my hand. 

Then I registered the flowing current by an amperemeter when pushing and pulling 

the permanent magnet. I could easily see that the pointer of the same apparatus "fol­

lowed" with a delay the motion of my hand. 

In figs. 48 and 49 there are two photographs which can persuade the reader in. the 

authenticity of my observations: I chose such ranges of the voltmeter and ampereme­

ter that the deviations of the pointer were quite the same when pushing and pulling 

the magnet exactly in the same manner. This signified that always the same current 

has passed through the coil of the measuring instrument and' the delays in the motion 

of the pointer due to mechanical and electrical causes of the measuring instrurrent 

were exactly the same. However, when using the rreasuring instrument as voltmeter, a 

big resistance was inserted in series with the coil of the measuring instrument, 

while when using it as amperemeter, a small resistance was inserted in parallel to 

the coil of the measuring instrument. 

I took the photographs always when pulling out the magnet from the coil (after 

having pushed it). As fig. 48 shows, when_ my big induction coil was closed by a big 

resistance, the flowing current at the pull motion had such a direction (note that 

the bottom "+" was pressed) that the current opposed the motion of the magnet.• 
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However, as fig. 49 shows, when ITfY big induction coil was closed by a small resi­

stance, the flowing current at the rroment of taking the picture during the pull mo­

tion had such a direction (note that the bottom "-" was pressed) that the current 

supported the motion. 

54.4. HOW THE ANTI-LENZ EFFECT CAN BE DEMONSTRATED ON AN OSCILLOGRAPH. 

With the aim to observe the time delay of the current flowing in the coil of a 

generator with respect to the generated tension, I fixed the rotors of two stepping 

motors to a convoon axle and drove them by a d.c. motor (fig. 50). 

But first I should like to make clear to the reader what a stepping motor is, con­

sidering one of the motors in fig. 50 which were of the type KP4M4, produced in In­

dia for IBM computers. 

In fig. 51 one of these motors is presented open. The rotor consists of two fixed 

one to another parallel cogged disks with 25 strongly magnetized cogs each, so that 

the cogs of the one disk have north magnetism and the cogs of the other disk south 

magnetism. The angular distance between two neighbouring cogs is a= 360:25 = 14~4. 

The cogs of the two disks are displaced at an angle a/2 = 7~2. so that when looking 

at the generatrix of the cylindrical surfaces of the disks one sees the cogs of the 

Fig. 48. Momentary Lenz effect when pulling the permanent magnet (after having 
pushed it) and the measuring instrument is a voltmeter, i.e., R » wL. 
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one disk in front of the notches of the other. 

The stator has four cores, any of which has four cogs, so that in the space be­

tween two neighbouring cores there are "missing" n0 = (25 -16):4 = 2.25 cogs. Around 

the .cores four double coils are wound in such a way that every one of these double 

coils is connected in series with. one 'of the double coils wound around the opposite 

core. 

Thus there are eight issues. Four of these eight issues are connected to a com­

mon point (a black issue) and the other four (coulored) issues are the free ends of 

the four coils (any of which, I repeat, is wound about two opposite cores). Every 

such coil has ohmic resistance R = 80 n and inductance L = 0.04 H. 

I present in fig. 52 a very simplified diagram of the stepping motor, from which 

one can easily grasp the principle of tension generation when rotating the rotor. 

I reduced in fig. 52 the cogs of the rotor to 13 and the cogs on every core to 

two. Then I have drawn only two opposite cores, omitting the two other cores. 

At the situation shown in the figure the anterior (north) upper cogs of the rotor 

come in front of the cogs of the upper core, while the posterior (south) lower cogs 

of the rotor come in front of the cogs of the lower core. Thus the magnetic intensity 

in the upper core increses in direction up (and reaches its maximum when the north 

Fig. 49. Momentary anti-Lenz effect when pulling the permanent magnet (after having 
pushed it) and the measuring instrument is an amperemeter, i.e., R « wL. 
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Fig. 50. Two nechani ca lly coupled stepping JOOtors ( used as generators) 
driven by a comJOOn d.c. motor. 

upper rotor's cogs will be exactly in front of the upper stator's cogs), while the 
magnetic intensity in the lower core increses also in direction up (and reaches its 
maximum when the south lower rotor's cogs will be exactly in front of the lower sta­
tor's cogs). 

The tension induced in the windings of the upper and lower coils will be such 
that the magnetic intensity, generated by the current flowing in the windings, must 
point down, as it must oppose the change of the magnetic intensity in the core (I 
apply the Lenz rule at the condition cj> ~ 0! ). Thus the direction of the induced 

Fig. 51. A stepping motor open. 
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current wi 11 be as shown in the figure. There are two parallel such coils. In fig. 

52 their initial pofnts are connected but in lllY motor (fig. 51) the final point of 

the one parallel coil was connected with the initial point of the other one. 

)hus when (at 4>; 0) the upper north rotor's cogs approach the stator's cogs, 

the current in the upper half of the toil has the indicated in fig. 52 direction, 

becoming zero when the north rotor's cogs are exactly in front of the stator's cogs. 

When the north rotor's cogs go away from the stator's cogs, i.e., when the upper 

south rotor's cogs approach the upper stator's cogs, the current in the upper half 

of the coil has the opposite direction, becoming zero when the south' rotor's cogs 

are exactly in front of the stator's cogs. Consequently, at a rotat.ion on "one cog" 

the induced· tension (and induced current) corrplete one cycle. The time, T, for this 

cycle is called period. The quantity v = 1/T is called LINEAR FREQUENCY and the quan-

Common black 
issue 

Single 
co loured issues 

Fig. 52. Oiagram of a stepping motor. 
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tity w = 2nv is the circular frequency. 

As the rotor has n = 25 cogs, at a rotation with N revisec, the circular frequen­

cy wi 11 be 

w = 2rrnN = 50rr.N. (54. 23) 

The inductive reactance of the coil will be 

wl = 50rrNL. (54.24) 

The phase angle is 

cp = arctan(wl/R) = arctan(50rrNL/R) = arctan(0.08N). (54.25) 

Thus at N = 12.5 rev/sec we have ct,= 45°. 

In fig. 53 one sees the osci l logram of the tensions generated by two coils of the 

two stepping motors shown in fig. 50 whose rotors were rotated on a comlOOn axle by a 

d.c. irotor. The tensions were conducted to the two channels of a double-beam oscil­

loscope. 

The oscillogram shows that the minimum of the tension generated by the coil of 

the second stepping 100tor (second channel). cones with 74~5 before the minimum of the 

tension generated by the coil of the first stepping 100tor (first channel). 

Then I closed the second coil by a resistance of 10 Q and led the electric ten­

sion acting on this resistance to the channel 2 of the oscilloscope (see fig. 54). 

CH1gn 

CH2gnd 

CH1 
CH2 

101/ 
10V 

A 500us -:.72 V CH1 

74 .505 •. 

I 
I I 

I 

I 
·I 

I/ /1 
/ I', 

Fig. 10 

Fig. 53. Graph of the tine correlation between the tensions induced in the first 
and second stepping motors (oscillogram). 
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The tension from the resistance was taken in such a way that on the oscilloscope it 

was inverted with 180° with respect to the induced tension (this inversion could be 

evaded if I had earthed not the "left" end of the resistance but its "right" end!). 

Now. we see that the maximum of the current (as a matter of fact, the minimum of the 

current if the 180°-inversion was evaded!) appears with 180°-164?9 = 15?1 before the 

minimum of the tension generated by the coil of the first stepping motor. 

Thus the retardation of the current in the second coil with respect to the ten­

sion generated in it, i.e., the phase angle, was 

(54. 26) 

According to formula (54.25) this phase angle corresponds to the following rate· 

of rotation 

N = 12 .5 tan59?4 = 21 rev/sec. (54.27) 

The measurement gave indeed this nurrber for the nitatiorial rate. 

Fig. 47 which is drawn for cp = 60° shows the relation between generated tension, 

induced tension and flowing current (i.e., ohmic tension) which were established 

in the coi 1 of~ stepping motor at a rotation with 21 rev/sec. 

The coincidence between theory and experiment was complete. 

Ctl1 10V A 500..s - 1. 72 V Ctit 
CH2 1omvn 

Fig. 54. Graph of the time correlation between the tension induced in the first 
stepping motor and the current induced in the second one (oscillogram). 
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54.5. GENERAL ANALYSIS OF THE ANTI-LENZ EFFECT. 

It is clear when looking at fig. 47 that the magnetic field generated by the hat­

ched current supports the rotation and only the magnetic field generated by the unha­

tched turrent brakes the rotation, or to put it shortly, the hatched current produces 

anti-Lenz effect and only the unhatched current produces normal Lenz effect. 

For (j> = 0 the whole generated current. produces Lenz effect, for O < (j> < rr/2 the 

Lenz effect is prevailing over the anti-Lenz effect and we have integral normal Lenz 

effect. For (j> -+- rr/2 the Lenz effect becomes equal to the anti -Lenz effect and we 

have integral zero Lenz effect. Thus the machine VENETIN COLIU can reach at the most 

an integral zero Lenz effect. 

However, at short-circuiting of the coils in our VENETIN COLIU machines we obser­

ved that the consumption of the driving motors diminished and the rate of rotation 

increased. Thus we observed an integral anti-Lenz effect. 

NOii I shall show that a part of this effect, i.e., a·part of the acceleration of 

the rotor, was due not to the production of energy from nothing but to the decrease 

of certain "friction energy", namely to a decrease of the energy losses due to the 

edqy currents. 

EDDY CURRENTS are the currents induced in massive conductors when the magnetic 

flux through the conductors varies. There is no principal difference between the 

currents induced in wires and the eddy currents, only the calculation of the effects 

related to addy currents is more difficult, as they are "hidden" in the massive con­

ductors. 

One can accept that the eddy currents are always "in phase" with the generated 

tension, as the inductance of massive conductors is extremely low. Thus the eddy 

currents will "follow" in fig. 47 the generated tension and their magnetic field will 

always (at low and high velocities of the rotor) brake the rotation. (Note, however, 

the R of eddy currents is al so very low!). 

If at (j> = rr/2 we short-circuit the coil of the generator, the magnetic intensity 

generated in the coil will produce magnetic flux exactly opposite to the magnetic 

flux <I> produced by the moving rotor's magnet. Th us the resultant magnetic flux 

through the coil will be less. This will lead to a ·1ower tension (Ugenleddy curr. 

which generates the eddy·currents. Consequently the braking action of the eddy cur~ 

rents will be less and the braking torque acting on the rotor will be less. 

The effect of the rotor's acceleration due to such a decrease of the eddy currents 

is not interesting for us and we have to search. to build VENETIN COLIU machines with­

out eddy currents which are only a parasitic phenomenon. If there are no eddy cur­

rnets, the only losses which we have to cover with energy produced from nothing (be­

cause of the integral zero Lenz effect) will remain the mechanical friction losses. 

As the friction losses can be made very low, a part of the energy produced at the 

zero Lenz effect which can be extracted from the machine can cover them. 
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However 11\Y experi nents showed quite clearly that if dis regarding the eddy currents, 

there is still a self-accelerating torque acting on the rotor at short-circuiting of 

the coil (see the data below) . 

.I could not find a firm and clear explanation of this integral anti-Lenz effect 

and I presune that it can be due to the EWING EFFECT. 

The effect observed for the first .tine (to the best of 11\Y knowledge) by Ewing(49) 

has many different names: magnetic viscosity, magnetic after affect, tine effect in 

magnetization. Recently ITJY friend Ch. Monstein( 50) revived this almost forgottrn 

but very important effect with a series of beautiful experinents. 

The Ewing effect consists in the retardation of the magnetization of a magnetic 

slab if the magnetizing intensity is applied to the one of its extremities and we 

look for the magnetization at the other extremity. This time is pretty large, of 

the order of tens of milliseconds per neter. 

Thus I made the hypothesis that, because of this retardation in the magnetization 

of the iron in our VENETIN COLI U machines, the magnetic flux in the coil reaches its 

maximum (when the length of the yoke is not negligible) not for the monent when the 

moving magnet reaches the neutral position (the moments t
0

, t 2 , t 4 in fig. 47) but 

with sone retardation. Thus the graph of the flux ~ will be displaced at a certain 

angle a to the right in fig. 47. Consequently all other graphs will be displaced 

at the same angle, as the variations of~ determine the variations of the induced 

tension. It is evident that in such a case the currents generating anti-Lenz effect 

wi 11 prevail over the currents generating Lenz effect. 

Additional theoretical and experinental work is needed for the acceptance (or 

rejection) of this hypothesis. 

54.6. THE MACHINE VENETIC COLIU V. 

The first four variations of the VENETIN COLIU machine built by ne are presented 

wi-th their diagrams and photographs in Refs. 51 and 52. 

I call VENETIN COLIU V every stepping motor, as every stepping motor has a very 

pronounced self-accelerating effect when used as generator and the rate of rotation 

is not low. Thus the stepping motor in figs. 50 and 51 can be considered as my VE­

NETIN COLIU V machine. 

In table 54.1 a series of measurenents with VENETIN COLIU Vis given. 

The table is self-explanatory and I shall give only sane short remarks: 

The lowest tension applied to the driving motor was 6 V, as at 5 V the motor 

?topped at short-circuiting of the coil because of the huge normal Lenz effect (ve­

ry low phase angle~). The normal Lenz effect is clearly seen at low velocities, 

i.e., at low driving tension of the motor. At Um = 10 V there is integral zero Lenz. 

effect and at Um= 30 V there is a considerable (52.3%) .anti-Lenz effect. One has 

to take into account that in stepping motors the eddy currents are very high (see 
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Table 54. l 

----------------------------------------------------------r-------
Tension Current consumed Power consumed Increase llPm Tensi oo Current Power pg 
applied __ bt_the_motor __ _ bL the motor_ of the 

Pm 
induced flowing produced 

P' to.the at open closed at open at clo. consum. in the in the by the m 
motor at power coils coils gener coils coils coils coils 

Um (V) I (mA) I' (mA) Pm (W) P' (W) llPm (W) % ug (V) lg (mA) pg (W) % .m m m 
--------- -------- --------------------

6 123 220 0.74 1.32 +o.5s +78.4 7.2 20 0.13 9.8 

10 160 160 1.60 1.60 0 0 14.5 42 0.56 35.0 

20 224 124 4.48 2.48 -2 .oo -44.6 30.0 43 0.59 23.8 

30 260 124 7 .80. 3.72 -4. 08 -52. 3 49 .0 43 0.59 15.9 
---------------- -------------------- ------------

the high power consurrption at open coils when the driving torque has to overcome on­

ly the friction (which is low) and the braking torque of the eddy currents), but ne­

vertheless it seems highly irrprobable that such a considerable decrease in the power 

consumed is due only to the decrease of the eddy currents. 

54.7. THE MACHINE VENETIC C0LIU VI. 
With the aim to exclude the action of the eddy currents, I constructed the machine 

VENETIN C0LIU VI with ferrite magnets and soft ferrites which had low eddy currents. 

Soft ferrite 

---

Soft ferrite 

Fig. 55. Schematic diagram of the two polar machine VENETIN C0LIU VI. 
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(Let me note that ll]Y machine VENETIN C0LIU II was also built only with.hard and soft 

ferrites and the machine VENETIN C0LIU III with soft ferrites( 51 l.) 
I went specially to a plant in former East Germany to buy them, as it was promi­

sed-to me that the ferrites will be thoroughly without eddy currents. This was not 

the case as the reader wi 11 see: the terri tes had eddy currents, but low. 

A detailed report on VENETIN C0LIU VI is given in Ref. 53. Here only a short ac­

count: 

The schematic diagram of one generator knot of VENETIN C0LIU VI is given in fig. 

55 and the photograph of the machine with three generator knots is given in fig. 56. 

The VENETIN C0LIU VI machine with only~ generator knot is shown in fig. 58. Fur­

ther I shall speak and give data for the machine with only one mounted generator 

knot. The description of the machine is the following: 

Along the rim of the rotating disk with diameter 180 mm there are arranged 24 cy­

lindrical magnets with diameter 19 mm and height 6 mm. Every 11-formyoke (which can 

be see in the middle of fig. 57) has the following dimensions: length 80 mm and 

height 90 mm. The disk is fixed to an axle with diameter 4 mm which can rotate on 

two ball-bearings fixed to the upper part of the machine. When the upper yoke with 

its two coils is fixed to the upper part, the disk is fixed to the axle at a respec­

tive distance from the coils (about 1 mm). Then the upper part is put on the four 

brass columns and, by letting it fall micrometrically down, the distance between the 

t}~'.·:~\ :·~--1 

\ 

Fig. 56. Photograph of the machine VENETIN C0LIU VI (wi.th three generator knots). 
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disk and the lower coils is fixed at the respective 1 nvn. 

I made coils with different thickness of the wire, beginning with thickness 1.8 

lllll. The best results, of course, were obtained with coils having the thinest wire, 

as their inductance was the highest. I shall describe the measurerrents only with 

such coils. 

Thus l made four coils with wire of thickness 0. 2 mm, 23,000 turns and resistance 

R = 1600 n each. Here the phase angles were the highest and the anti-Lenz effect also 

the highest. Let me note that the currents in the different coils, because of the 

appearing mutual inductances, depended strongly one on another. So I measured the 

fa 11 owing currents in coil 1 ( see fig. 55): 

I= 7.4 mA when coils 2,3,4 were open, 

I = 5.4 mA when coil 2 was closed and coils 3,4 open, 

= 6.2 mA when coil 3 was closed and coils 2,4 open, 

= 5.1 mA when coil 4 was closed and coils 2,3 open 1 
I·= 3. 7 mA when all coils 2,3,4 were closed. 

The measurements are presented in table 54.2. 

The driving tensions, Umot• are given in the first column, the currents 10 consu­

med by the rrotor when the disk rotated a lone a re given in the second column, the cur­

rents 100 consumed by the rrotor when the coils are rrounted without the yokes (and 

even .without the wires) are given in the third column. I show in fig. 57 (at the 

left) how the coils without the yokes were mounted. Comparing columns 2 and 3 

Fig. 57. Parts of the VENETIN COLIU VI machine: 1) the yokes of soft ferrites (in 
the middle), 2) the lower and upper yokes on every one of which only one 
coil is rrounted (at the right), 3) rrounting of the lower and upper coil 's 

supports without wire (at the left). 
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Table 54.2 
----------------------------------------------------------------------------------
Driving ---------------~:iving __ current __________________ 

Current · Current Power 
tens ton without yokes without yokes with yokes with yokes 

di ffera,ce change change with out co i1 s with coils with coils with coils 
(open) (closed) llI = 

urrot ( V) Io (mA) Ioo (mA) I (mA) I I (mA) I-I
0

(mA)_ I' -I (mP) llP (mW) 
------------------------------------ ---------- --------

5 33 33 38 53 5 15 75 

10 46 46 53 54 7 1 10 

15 65 65 80 70 15 -10 -150 

20 88 89 104 91 16 - 13 -260 

Generated current: Igen = 3.7 mA, 2 
Generated power: Pgen = 4IgenR5 = 88 mW 

one sees that the friction in the air when the coils are nnunted- is so feeble, that 

it can be neglected. The currents, I, consumed by the nntor when the coils are moun­

ted with the yokes of soft ferrites are given in the fourth colu1111, for the case 

where the coils are open. The currents, I', for the case where the coils are closed 

(i.e., short-circuited) are given in the fifth colu1111. The differences of the cur­

rents I and I0 are given_ in the sixth colu1111. The changes ill = I' - I of the cur­

rents at closed and open coils are given in the seventh colu1111. The changes llP = 

Fig. 58. Driving a corona motor by the output of VENETIN C0LIU VI increasing the 
tension vi a a cascade ( on the machine one generator knot.is nnunted). 
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UJOOt(I' - I) in the driving power are given in the eighth column. 
If considering the last line of this table, we see that the law of energy conser­

vation is .violated. Indeed, at Umot = 20 V and closed coils the driving current is 
91 mA .. Of this current 100 = 89 mA are spent for overwhelming the mechanical friction 
and only I' - 100 = 2 mA or P' - P00 = 40 nM are spent for producing electric energy. 
Meanwhile only the electric power produced as heat in the wires of the coils is 
Pgen = 88 111'1. To this power one must add also the heat power of the remaining eddy 
currents (which, unfortunately, cannot be measured). 

If at eddy currents equal to zero, we can still have an integral anti-Lenz effect, 
then one can run the VENETIN COLIU machine as a perpetuum mobile by short-circuiting 
its coils. 

If we can arrive at the most at a zero Lenz effect, then to run the machine as a 
perpetuum mobile, a part of the produced electric energy is to be sent to the driving 
motor. 

I established( 54) that the electrostatic CORONA MOTOR needs less electric power 
for its rotation than the delivered mechanic power. In fig. 58 a corona motor is 
shown driven by the tension generated by the VENETIN COLIU VI machine which was en­
hanced to about 10,000 V direct tension by the help of a cascade shown in the photo-

Fig. 59. Photograph of the machine VENETIN COLIU VII. 
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graph (later I made four such blocks). At rotation or non-rotation of the corona rm­

tor the input of the driving motor remained exactly the same. The rotation of the 

corona motor was powerful but much rrore feeble than the rota ti on of the driving mo­

tor! However the losses in the cascade, done by the rrost cheap diodes and condensers, 

consumed a considerabe power from the generator. At a cascade without losses there 

are no problems to drive the VENETIN C0LIU machine.with low friction (see Sect. 54.8) 

and without eddy currents by a corona motor. 

54.8. THE MACHINE VENETIN C0LIU VII. 

VENETIN C0LIU VII is constructed exactly in the same manner as VENETIN C0LIU VI 

and with the same (bad!) hard and soft ferrites (fig. 59). The difference is that the 

rotor of VENETIN C0LIU VII is suspended on jewel axle and the earth attraction is 

balanced by a magnetic repulsion (see Sect. 59), so that the mechanical friction is 

reduced practically to. zero.· There is only one coil in a generator knot (we can have 

three such knots, as one side in the apparatus must be left free for the driving roo­

tor - see fig. 59). I made only one coil with thickness 0.6 mm, 27,300 turns and re­

sistance R = 730 n. 
The yoke for this big coil was much longer and this increased the Ewing effect. 

Fig. 60. The stand of the pupils on the "anti-Lenz effect" at the regional middle 
school corrpetition in MUnster. 
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Now, however, because of the much longer yoke, the reluctance became too high and the 

magnetic flux was considerably diminished. 

I hope that with good ferrites (without eddy currents, with larger cross-sections 

outsid~ the coil, possibly with higher permeability) and stronger magnets (also with­

out eddy currents) I shoul be able to run VENETIN COLIU VII as a perpetuum mobile 

with the coil and the rotor suspension shown in fig. 59. 

54.9. THE ANTI-LENZ EFFECT AND THE CHILDREN. 

Official science makes as if my theory, experiments, machines and publications do 

not exist. The same do all professors and students all over the world, as even the 

minds of the students are a 1 ready deformed by the existing scientific dogmas. 

But the minds of the pupils in the middle schools are free. So the pupils in the 

fJUede.n6~chui.e in MUnster, Germany, reproduced ny ball-bearing motor (see Sect. 64) 

and won with it the first prize at the competition SchiileJt expvume~eJten for the 

year 1989. 

The pupils of the same school made also demonstrations of the anti-Lenz effect on 

stepping motors and presented their experiments at the regiona 1 coll1)etition Schii.leJt 

expeJUmen:tleJLen for the year 1993. The pupils received however the second prize, as 

if the first prize would be awarded, they would have the right to present their ex­

periments at the national competition. This, surely, would anger the national Jury 

of eminent German high-school professors. 

Thus official science is afraid even of the experiments of the pupils in the mid­

dle schools and makes all possible to suppress their research and to silence their 

observations. 

The stand of the pupils at the regional competition is shown in fig. 60. 

55. MOLLER'S SIMPLE EXPERIMENT REVEALING THE ROLE OF IRON CORES 

IN THE ELECTROMAGNETIC MACHINES 

Fr. ffiller carried out< 36) the following experiment wMch he presented in a simp-

1 ifi ed form( 55 l shown here in fig. 61. 

The current in the rectangular loop generates a certain magnetic intensity field. 

On the loop there is a cylindrical core of soft iron in whose hole a wire ab (vert 

long) passes. At the end points of the wire there are sliding contacts and the wire 

can be nvved at right angles to its length in the cylindrical hole of the iron. The 

cylindrical iron can also be moved, alone, or together with the wire. 

In MUller's experiment the following electronvtive and ponderomotive effects can 

be observed (MUller has observed only the electr_omoti ve effects): 

If the wire is moved but the shield and the loop are at rest, there will be no in­

duced tension because there is rotA = 0 in the domain of the wire's location. If sen­

ding current through the wire ab and only ab has a freedom of motion, there will be no 
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motion of ab, as rotA = 0. 

If the wire ab is at rest and the shield is rroved with a velocity v, a motional­

transformer electric intensity will be induced in ab because we shall have (v.grad)A 

f 0 .. If also the wire ab rroves with the same velocity as the shield, the induced 

tension will rewain exactly the same,· as the rrotion of ab in a domain where rotA = 0 

is i mmateri a 1. 

If the shield has a freedom of motion (resp., the shield and the wire solidly fi­

xed to the shield have freedom of rrotion), there will be rrotion of the shield (res­

pectively, there will be motion of the shield and the wire). The explanation of this 

motor effect is the following: At the right side of fig. 61 are designed the lines 

of the wagnetic intensity (i.e., the lines of the magnetic induction). If we look 

from point a to point b, then, at the indicated direction of the current in the rec­

tangular loop, the lines of the magnetic intensity (induction) will be pointing from 

down to up. Let us now suppose that along the wire ab current flows from the reader 

(i.e., from point a to point b). In such a case the magnetic intensity lines of the 

wire's current are to be added to the existing lines of magnetic intensity. As at 

the right from the wire ab the magnetic 1 i nes• generated by the wire's current wil 1 

be opposite to the existing wagnetic lines, the resulting lines wi 11 become rrore rare; 

similarly at the left from the wire ab the resultant wagnetic lines will become more 

dense. As the magnetic lines can be considered as "elastic strings", forces will ap­

pear pushing the shield to the right tending to equalize the density of the result­

ing magnetic lines at the right and at the left of the wire ab. Thus the shield will 

be pushed to the right. 

I have to emphasize once more (see Sect. 51) that there are no wagnetic lines 

and it is senseless to imagine that some "elastic tensions" exist between the wagne-

tic lines. The magnetic lines and the "elastic tensions" are only a syntolical lan-

guage. But with this syntolic language Faraday, who was not a wathewatician, could 

give right pre di cti ans to wany effects in electromagnetism. Although this figurative 
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Fig. 61. 11.il ler 's experiment revealing the role of i ran cores. 
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Faraday language has no sorre material (physi.cal) background, I use it too to be 
able to explain with a couple of sentences pretty corrplicated effects which one ob­
serves. If one would like to give an adequate physical explanation, one has to des­
cribe !he interaction between the single current elerrents (in the rectangular wire, 
in the wire ab, but also in the iron of the shield) and then to integrate. This way 
is cunbersorre and we can give a quick qualitative answer by using Faraday's synbo­
lic language. This is the whole "puzzle" with the forces which act on the shield 
but do not act on the wire. 

The explanation of the above effects allows to explain the effects in the rotors 
and stators of the electromagnetic 11achines where the current wires are put in the 
holes of iron cores. Official physics is unable to present logical physical expla­
nation of these effects, as it ignores the notion "motional-transforrrer induction" 
and the notion "absolute space" in which all electromagnetic phenonena are to be de­
scribed. 

56. THE ANTI-DEMONSTRATIONAL ROTATING AMPERE BRIDGE (RAB) EXPERIMENTS 

The story with rnY ROTATING AMPERE BRIDGE (RAB) EXPERIMENT was very dramatic. Be­
cause of a wrong calculation when proceeding from Whittaker's formula, I carre to the 
wrong conclusion that, according to Whittaker's formula (24.3), RAB must rotate. 

I constructed several RAB-MACHINES all of whom, more or less, showed sorre acting 
torques. I becarre actively involved in the construction of RAB-machines, as their 
executions were relatively easy and cheap and I hoped(21•56•57) to demonstrate in 
this way the validity of Whittaker's formula. 

However, later I established that all effects of rotation which I have observed 
were due to side effects and that there is no magnetic torque acting on the rotating 
Ampere bridge. Thus all rey RAB-experirrents are, as a matter of fact, anti-demonstra­
tional (null) experirrents. 

I shall present here the photographs of sorre of rey RAB-experirrents, as I have de­
dicated tine, money (and hopes) for their expecution and to the mother's heart not 
only the successful children are cherished. And I shall point out at the side effects 
which led rre astray. 

My most sirrple rotating Arrpere bridge with two symnetric shoulders (to exclude 
the magnetic action of the Earth's magnetic field if constant current is sent througi 
the bridge) is shown in fig. 62. I observed oscillations of the bridge when sending 
current pulses of sorre 10 A with a frequency equal to the own frequency of oscilla­
tions of the system. The bridge began to oscillate. Later I understood that the rea­
son for the oscillations was in the thermal deformations of the suspension wires. 

I express here rey thanks to rey friend, Prof. Pappas, who, during my sojourn in 
his house in Los Angeles, helped me in revealing this thermal effect. 

I began to construct rotating A~ere bridges in the late eighties when Whittaker's 
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formula was still unknown to me. At that time I thought that Grassmann's formula 

(24.4) is the right one and that Arrpere's formula (24.5) is wrong. To give an expe­

rimental support to this llfl,' conviction, I constructed the nachine whose drawing is 

in fig. 63 and the photograph in fig. 64. As according to Grassmann's formula, on the 

IT-form wire ABB'A' in fig. 14 there must be a force pushing it in the direction AB 

(A'B'), I decided to put sliding contacts at the points A and A', to make the wires 

QA and O'A' current conducting disks, and to observe the "propulsive" motion of the 

Amepere bridge ABB' A', which because of the motional limitations wi 11 become rota­

tional. 

The nachine was done and it rotated in the direction "predicted" by Grassmann's 

formula. With the aim to be able to measure the induced electric tension and to make 

also energetic measurements with this "rotating Ampere bridge", I coupled the bridge 

with the Faraday disk generator shown on the le ft side of fi gs . 6 3 and 64 and ca 11 ed 

the whole machine "Rotating Arrpere bridge with sliding contacts coupled with a Fara­

day disk generator" or shortly the RAF-MACHINE The detailed description of this 

beautiful machine with all data of the observed electromotive, ponderomotive and 

energetic effects is presented in Refs. 22 and 58. 

Later, however, I understood that the driving torque was due not to_ the "Grass­

mann 's forces" alegedly acting on the IT-form rotating bridge, but to the forces ge-

Fig. 62. The anti-demonstrational RAB-machine with two shoulders. 
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nerated by the currents solid to the laboratory. The diagram explaining why a torque 

acts on the rotating Ampere bridge with sliding contatcs is shown in fig. 65 and 

the detailed explanation of the appearing forces and torque according to Whittaker's 

fonnul~ (Nicolaev's fonnula will not lead to sone substantial changes) is given in 

Ref. 56. 

When I realized that in the rotating Ampere bridge suspended on a wire the ther­

mal side effects lead to a torque, I decided to make an autonomous rotating Ampere 

bridge where such thermal forces will be eliminated. In such an AUTONOMOUS ROTATING 

AMPERE BRIDGE (ARAB) EXPERIMENT also a violation of the angular monentum conservation 

law would be observed, according, I repeat, to the wrong calculations done by ne when_ 

proceeding from Whittaker's formula. 

The photograph of my first ARAB-MACHINE is shown in fig. 66. The source of the 

direct current are the 18 Cd-Ni accumulators arranged radially on the bottom and 

connected in parallel producing current of hundreds of ~mpere. The current leaving 

the positive electrode of the accumulators, goes up along the six vertical periphe­

ral colu1111s to the upper netal disk. By screwing down the top central massive nut 

bolt (of which on the photograph only the lower part is seen), one makes contact and 

the currel)t crossing downwards the rotating Ampere bridge (with four shoulders) re­

turns to the negative electrode of the accumulators. 

Copper 

Plastic 
Magnet 

Fig. 63. Diagram of the rotating Ampere bridge with sliding contacts coupled with 
a cenented Faraday disk generator (RAF-machine). 
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The ARAB-machine, indeed, cane into rotation, as I reported.in Ref. 56. Later, 

however, I understooi 57) that the reason fo~ the rotation of my ARAB-11Bchine was the 

interaction with the Earth's magnetic field . 

. The Earth's 11Bgnetic field, however, cannot set the ARAB-machine in rotation but 

only in oscillation about a certain neutral position. t,'eanwhile I observed rotation. 

The explanation of this effect came after many experi nents carried out during about 

two months as I charged the batteries once or twice in a day. The explanation of 

this rotational effect was the following: When switching on the circuit, the cur­

rent produced by the accumulators was maximum and rapidly decreased. Thus the ini­

tial push (due to inevitable current assynetries in the columns) was the most power­

ful, the heavy body, because of its big inertia, could overwhelm the opposite torque, 

as the current producing the opposite torque was substantially less, and so I obser­

ved a continuous rotation. 

To exclude the action of the Earth's magnetic fie·ld, I put the ARAB-machine in 

an iron "saucepan", 11Bnufactured specially for this aim (fig. 67), but the thin iron 

wa 11 s of the "saucepan" could not screen effectively enough the Earth 's magnetic 

Fig. 64. Photograph of the RAF-machine. 
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field. 
The best way was to send alternating current in the ARAB-machine, but I could 

not rrount on it a source supplying such a big current. Thus I constructed the second 

ARAB-machine shown in fig. 68 suspending it on strings. Here many wires (about 20) 

have lieen wound as one can see on the photograph and the mains supplied alternating 

current of tens of arrperes. Absolutely no oscillation has been observed. 

To esclude the thermal effects of the suspension, also the second ARAB-machine 

shown in fig. 68 was put to swim in water and the current conducting wires were 

loosely connected with the body of ARAB, so that no torque due to thermal deforma­

tions could be corrmunicated. One the other side, as the current conducting wires 

were bifilar (i.e., going and returning), their magnetic action was null. 

Finally I constructed a "rotating Arrpere bridge" not with linear but with circular 

arms (fig. 69) sending to it direct and alternating current. Absolutely~ rotation 

has been observed. If the current conducting wires in this machine will be very long, 

dr 

Fig. 65. Diagram for explanation of the torque acting on the rotating Ampere bridge 
with sliding contacts which is the motor part of the RAF-machine. 
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Fig. 66. Photograph of the anti-deroonstrational ARAB-machine. 

Fig. 67. The ARAB-machine put in an iron saucepan for screening Earth's magnetism. 
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then the calculation of the zero torque (not for vertical wire conducting current to 

or from the periphery of the circular wires but for horizontal such "external radial 

wire 11
) is given in Sect. 2 7. 

I gave here short reports on ~ (not of a 11 ! ) of the rotating Ampere bridge ex-

periments constructed by me to show to tlie reader that when doing experiments: 

1) it' is very i ffl)ortant to have the right formula, 

2) it is very iffl)ortant to make ri!lit calculations with the right formula, 

3) otherwise side effects may lead the researcher very far astray from the way of 

the scientific truth. 

I communicated~ (I did many other!) of lllY failures·and errings, so that the 

reader can see that I landed on Olyffl) of electromagnetism not on the back of Pegas11S, 

but clinting up on its thorny and stony precipices as a blind and faulty man during 

years of diabolic experimental and theoretical work. 

Fig. 68. The second anti-deroonstrational ARAB-machine with many windings. 
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Fig. 69. The RAB-machine with "circular arms". 

57. EXPERIMENTS DEMONSTRATING INDIRECTLY THE EXISTENCE OF LONGITUDINAL 

MAGNETIC FORCES 

57.1. SIGALOV'S SECOND EXPERIMENT (fig. 70). 

The wires AB and CD are solid to the laboratory. The rectangular current wire 

EFGH has sliding contacts at the points Band C and has .a freedom to move left or 

right. When sending current as shown in the figure (or in the opposite direcion), 

the rectangular wire EFGH moves to the right sliding on the contacts Band C. 

Sigalov( 59) explains the motion proceeding from Grassmann's formula (24.4) as a 

"self-interaction" of the currents BC, EF and GH (BC and EF repel one another, while 

BC and GH attract one another) what, obviously, is a nonsense. 

The explanation of the motion can only be done if proceeding from Whittaker's 

formula (24. 3) (Nicolaev's formula (24.12) leads to the same result) as interaction 

between the currents AB and FG, on one side, and CD and HE, on the other side. Thus 

those are the longitudinal forces fFG and fEH which push the rectangular loop to the 

right. 

The forces of reaction fAB and fcD are applied to the fixed wires AB and CD and 

point to the left. 

Let me note that Sigalov's first experiment was shown in fig. 10. 
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Fig. 70. Sigalov's second experiment. 

57.2. SIGALOV'S THIRD EXPERIMENT (fig. 71). 
The wire BC is solidly fixed to the rectangular permanent magnet EFGH. This wire 

has sliding contacts at the points Band C and a freedom to move up-down. When sen­
ding current as shown in the figure, the magnet with the solidly fixed wire BC moves 
downwards. If changing the direction of the current, .the magnet moves upwards. 

Sigalov( 59) explains ag~n the motion as self-propulsion because of the interec­
tion of the current BC with the horizontal magnet's currents which are indicated in 
the figure as EF and GH. 

Meanwhile the explanation of the effect is exactly the same as in fig. 70: Those 
are the longitudinal forces with which the fixed currents AB and CD act on currents 
FG and HE producing the resulting force fFGHE· These longitudinal forces point down­
wards, while the forces of reaction fAB and fcD acting on the fixed wires point up­
wards. 

As a matter of fact, the experiments shown in figs. 70 and 71 are quite identical. 
To see how similar are these two experiments, rotate fig. 71 over 90° in an anti­
clockwise direction and compare it with fig. 70. 
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Fig. 71. Sigalov's third experiment. 
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57.3. GRANEAU'S EXPLOSIONS OF WIRES BY HIGH CURRENTS. 

Graneau( 60) observed that when high current passes through wires, they explode in 

a very short time in numerous small pieces. After analysing these pieces, Graneau 

.calll! to the conclusion that the explosion in no way can be caused by thermal action 

(heatirig, melting, vaporation, explos1on). 

As Graneau is a supporter of Ampere's formula, according to which colinear current 

elements repel one another, he introduced the hypothesis that the explosion of the 

wires along which high current flows must be due to the alleged "Ampere's repulsing 

magnetic forces" acting between the coli near current elements. 

According to IJlY concepts (when proceeding from Nicolaev's formula (24.12)) one 

must reject Graneau's hypothesis as wrong. The explanation of the explosion of wires 

along which high currents flow is the following: 

Sansbury{ 6 l) observed that when stationary current flows along a wire, a positive 

electric charge is repulsed from the wire, independently of the direction of the 

current. Thus a wire along which current flows becoiies charged positively. Why? -

Because the positive electrode of the batter):' "sucks" the electrons from the wire in 

its immediate neighbourhood, and .the process goes on with a velocity near to c along 

the whole wire until the "sucking force" reaches the negative electrode of the bat­

tery. Thus a wire along which current flows must become charged positively the whole. 

Otherwise electrons from the negative elect rode of the battery cannot be extracted. 

It is a stupidity to think that the charges from the positive electrode can attract 

the electrons from the negative electrode by their "coulomb attraction", as the dis­

tance between these two electrodes may be kilometers. The "coulomb attraction" is 

between every two neighbouring current elements. The propagation of a current pulse 

along a wire has many common features with the Ewing effect (see Sect. 54.5), how­

ever the velocity of propagation of the "electric pulse" is much higher than that of 

the "magnetic pulse". 

When the current is higher, the depletion of electrons in the current conducting 

wire us higher, and the repulsive forces between the positively charged ions of the 

metal lattice provoke the explosions. A childishly simple explanation! 

58. EXPERIMENTS DEMONSTRATING DIRECTLY THE EXISTENCE OF LONGITUDINAL 

MAGNETIC FORCES 

58. 1. HERING'S EXPERIMENT {fig. 72). 

Hering( 62 l carried out many experiments in which longitudinal motions of straight 

current wires have been observed. These e xperi men ts have categorically shown that 

Grassmann 's formula is wrong, but Hering's endeavours to persuade the world by 

obvious experiments that Grassmann 's formula (and thus also the Lorentz equation) 

cannot be right remained without success. This is a clear example that official phy-
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sics is not an experirrental science but a dogmatic science as it was during the 

dark Cqiernicus - Bruno -Galileo epoch. Nothing has changed (and nothing will change). 

Let me write, for curiosicy, the following sentence from Hering's cumulative pa-

per(62): 

During the past fifteen years the writer has repeatedly called the attention 
of physicists to the experimental evidence of the present unsatisfactory state, 
and showed how some of our laws misled and even deceived the engineer when he 
tried to apply them; they were repeatedly appealed to by the writer to revise 
them so that the engineer could use them and depend on them as being correct, 
... but there was a surprising lack of interest in correcting alleged mistakes 
and shortcomings, and even a determined effort to prevent the publication of 
the writer's investigations. In one case publication was at first refused on 
the ground that if the experimental evidence was correct, which was easily de­
monstrated, ·it was so serious a matter to change one of the older laws, that 
it ought to be kept secret! In another case the refusal was because it was, 
"so subversive of long established principles", the age of a law being consi­
dered more important than its correctness. 

shall analyse here only one (fig. 72) of Hering's experiments which is extre­

rrely reach on conclusions. 

The wires DEFGHAB as well as the wire CG, called by Hering also vertical conduc­

tor and designated by V, are fixed to the laboratory, while the wire BD, called by 

Hering also horizontal conductor and designated by H, is suspended on filaments and 

can easily be moved in horizontal directions to the left and to the right. At the 
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Fig. 72. Hering 's experiment. 



- 235 -

points B, C and D there are sliding contacts realized by the help of mercury troughths. 

The battery supplies the current 11 in the wires ABC, which separates in the currents 

12 and 13 at the point C, the latter unifying again to the initial current I 1 at 

the point D. When sending current in the indicated (or opposite) direction, the wire 

BD moves to the right. The JOOtion can imrrediately be explained by Whittaker's for-

mula (24.3) (Nicolaev's formula (24.12} leads to ttie same result}. 

Indeed, take in formula (24.12) the current element I3dr' along the wire CG, the 

current element I 1dr along the wire BC and the current element I2dr along the wire 

CD. The vector distance r points from I3dr' to l1dr and I2dr. 

The first term of formula (24.12) gives vertical forces which are compensated by 

the weight of the wire CD, as the vertical force acting on it points upwards, and 

by the tension of the right suspension filament, as the vertical force acting on the 

wire BC points downwards. The second term gives forces which point to the right for 

the wire BC as well as.for the wire CD. The third term in formula (24.12) is equal 

to zero. 

The experiment is extremely easily repeatable and simple, its explanation by the 

Whittaker-Nicolaev formulas is straighforwaTd but for alJOOst 100 years it has been 

silenced. 

Now l shall give the presentation of Hering's experiment by his own words( 62 l, 
as Hering has also transformed the propulsive experiment in fig. 72 to an extremely 

important rotational variation (I give the picture for the rotational variation in 

fig. 73). 

In Hering's paper there is a diagonal line between the middle points of the wires 

CG and CD, along which, according to Ampere's formula (24.5) the forces of interac­

tion between the respective current elements must act. I do not draw this line in my. 

figure 72, as according to the Whittaker-Nicolaev formulas, the forces of interaction 

between the current elements of the wires CG and BCD do not lie on the lines joining 

the elements. 

Thus hear now Hering( 62 ): 

Fig. 72 is a JOOdi fied form of an old experiment attributed to Faraday or per­
haps to Ampere. It furnishes a different and independent proof of the longi tu­
di na l force and one which it is difficult if at all possible to meet by the ol­
der laws. In the original a vertical conductor V was JOOunted so that it could 
move to the right or left parallel to itself. It contacted with a horizontal 
wire H which was stationary. When the currents were passed in the directions 
indicated the JOOvable wire V JOOved to the left. 

The writer maintains that as the JOOvement of V was caused by the current in 
H, then if the apparatus be reversed so that Vis fixed and H has a freedom of 
motion in the opposite direction, the same force would move Hin the direction 
of its length, which it did, thus showing the existence of this strongly de­
nied longitudinal force. This must follow from Newton's third law, that for 
every action there is an equal and opposite reaction. It aslo must follow from 
the view of Ampere and others, apparently endorsed by Maxwell (Art. 527), at · 
least not denied by him, that the force between two elements is along the line 
which joins them, as shown by the diagonal line (I repeat, this diagonal line 
is not indicated in my figure - S.M. ). If so, such a direction must have com-
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ponents in the directions of the lengths of both conductors. 
It seem; strange that although this experinent, the law of Newton, and the 

views of Ampere, have been known for the past hundred years, this nethod of 
proving the existence of the longitudinal force has apparantly not been con­
sidered before, or if it has it has certainly not been generally known, or 
-had been forgotten, and is s ti 11 being strongly contested. 

In the writer's irodi fi cation the wire V was fixed and the loig wire H was 
suspended so that it had freedom of rootion lengthwise. When the currents were 
passed in the directions shown, the wire H rooved to the right, or when one of 
the currents was reversed, then to the left. The contact between the two was 
made with small rrercury trough carried by H. When H was fixed and V allowed 
(by rreans of rrercury trough) to move in the direction of its length, it so 
moved away from H (Nicolaev's formula leads to this result, as I noted above 
that the bigger force acting on BC points downwards and the lesser force ac­
ting on CD points upwards, so that the resultant force of reaction a:ting on 
CG must point upwards - S.M. ). Before the experirrent a current was passed 
through H alone to make sure that no rootion was caused by the very short ver­
tical parts that dip into the rrercury dishes; moreover the final motion was 
again in the opposite direction to what it would be if it had been caused by 
these vertical parts as most physicists will claim, because the current in one 
pair of ends is necessarily-greater than in the other. 

F G 

D 0 

----c-----~ 
Fig. 73. Rotational variation of Hering's experirrent. 
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It will probably not be denied that the forces involved are concentrated 
almost entirely at or near the comer where the conductors are nearest together; 
it is therefore a weak argument to make a crucial point, as has been done, of 
where the "rest of the circuit" is. Beyond a few inches from the corner the 
circuits have probably an entirely ne gl i gi bl e effect on the forces; and it 
therefore does not matter where they are. Some physicists have "grabbed at 
straws" to uphold the older laws, instead of being helpful in trying to im­
rove them. 

This same test was also made and exhibited by the writer some years ago, in 
a different way, reserrbling more closely the apparatus existing in many physi­
cal laboratories to show the original experiment of Faraday. H was a stationa­
ry circle. and V moved around this circle. In the modified form V was fixed 
and the circular part moved. Sliding contacts were used to replace the usual 
liquid conductor and this caused much friction, but still the movement was 
quite decided, and was witnessed by many. 

The rotational variation of Hering's propulsive experiment is shown in fig. 73 

(in his paper Hering does not give a picture of the rotational variation). The con­

ductive circle can rotate about the center 0. At the points B, C and D there are 

sliding contacts with the wires DFHB and CG which are solid to the laboratory. When 

sending current as indicated (or in the opposite direction) the conductive circle 

will begin to rotate anti-clockwise. Thus Hering has constructed an S-motor some 

100 years ago. And his fateful experiment was followed by 100 years of universal 

blindness, or,better to say,of acanite resistance against obvious facts. 

58.2. GRANEAU'S SUBMARINE {fig. 74). 

Graneau( 63 ) carried out the following experiment: A tungsten "submarine", whose 

left end was "cut" and right end "pointed", was immersed in mercury. When sending 

current in the mercury in parallel to the submarine's length (see the figure at the 

left side), it moved forward with the cut end. 

The explanation according to Nicolaev's formula (24.12) is strai ghforward: The 

current's filaments which arrive at the cut end of the submarine are more para11e·1 

than the current's filaments which arrive at the pointed end, as the conductivity 

of mercury is lower than that of tungsten, and the same current can pass from both 

sides of the submarine if the current at the pointed end goes through a~ cross­

section, as shown in the figure. Thus the current 's filaments in mercury at the cut 
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Fig. 74. Graneau's submarine experiment.· 
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end conclude with the current's filaments in the tungsten angles near to zero, while 

the current's filaments in mercury at the pointed end conclude with the filaments in 

the· tungsten angles different from zero. Consequently the vertical components of the 

filaments at the pointed end prevail over those at the cut end and the submarine 

obtains a push to the left. 

Instead to point the right end of the submarine, one can cut also this end and 

make the submarine entirely symmetric, but then to cover the right end by an insu­

lator or one has to remove the right electrode from the line of the submarine to two 

positions whose joining line is at right angles with the submarine's line, as Nico­

laev(59) has done. At these variations (see the picture on the right side of fig. 

74) the ll'Otion of the submarine re-mains in the same direction to the left. 

Graneau( 53 ) has wrongly explained th.e nntion of the submarine by the alleged 

"Ampere's repulsive forces" between colinear current elements. 

According to Nicolaev's formula, however,the forces between colinear current ele­

ments are null and those are the forces between the "perpendicular" current elements 

which provoke the nntion of the submarine. Further only Nicolaev's formula will be used. 

58.3. FIRST NICOLAEV'S EXPERIMENT (fig. 75). 

In the rectangular wire ACDF the contacts at the points B, C, D and E have been 

done sliding by the help of mercury or electrolytes. Then Nicolaev observed that by 

sending current in the indicated (or opposite) direction, the wires BC and DE moved 

to the left, while t_he wire CD moved to the right. The calculation of the force ac­

ting on the wire BC (DE) can be found in Sect. 26.1. 

The calculation of the force acting on the wire CD, as shown in Sect. 25, is a dif­

ficult mathematical problem, as at its solution singularities do appear. To make 

the calculation easy (as in Sect. 26.1), the sliding contacts at the corners C and 

D are to be done as shown in fig. 76. In such a case the exact values of the forces 

acting on the wi res BC, CD and DE can be found and then compared with the experi men-

tal data. 

fBC 
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Fig. 75. First Nicolaev's experiment. 



- 239 -

l 
I 

-I 

I 

Fig. 76. Realization of the sliding contacts at the corners of Nicolaev's first 
experiment permitting exact calculation of the acting forces. 

Obviously the force fcD will be stronger than the sum of the forces fBc and fDE• 

as on the currents BC and DE only the current CD acts, while on the current CD be­

sides the currents BC and DE also the currents AB and EF act (we assunie_ that the last 

two currents are long enough). 

Here I shall only calculate, by the help of formulas (24.3) or (24.12.),the hori­

zontal elementary force with which a current element Idr' with abscissa x acts on 

a current element ldr with ordinate y, taking the first element at the wire BC and 

the second element at the wire CD, 

2 2 ,. 
dfCD = µ4011 rl2 cos\), drdr'(-x) - - µo I yx 

- 411 (x2 + y2)3/2' 
(58.1} 

and the force with which Idr acts on Idr' 

µo 12 , ,. µo 12 y x dfBC = - - COS\jJ drdr X = - __ ...._ __ 
411 r2 411 ( x2 + y2 ) 3/2 · 

(58.2) 

58.4. SECOND NICOLAEV'S EXPERIMENT (fig. 77). 

The part BC of the rectangular wire ACDE is cut and suspended on strings at a 

distance of 2 + 4 mm above. The condenser C0 in the circuit is charged to 10 + 20 kV. 

When closing the switch K, sparks appear at the points B and C and the condenser is. 

discharged. During the discharge the suspended wire BC moves to the left driven by 

the longitudinal force fBC whose element is given by the formula (58.2). 
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Fig. 77. Second Nicolaev's experirrent. 

58.5. THIRD NICOLAEV'S EXPERIMENT {fig.78). 

The current in the double rectangular circuit EDCD'E'F flowing along the wire BC 

(which has sliding contacts at its ends) separates at the point C into the equal cur­

rents of half a value CDEF and CD'E'F. The forcefBc acts on the wire BC pushing it 

to the left. The forces of reaction fcD and fcD', whose sum is equal and opposite 

to the force fBc act on the wires CD and CD'.· 

58.6. FOURTH NICOLAEV'S EXPERIMENT {fig. 79). 

The wire BC in the rectangular wire ADEF has sliding contacts at its ends and can 

move in the horizontal direction. When currents flow in the two srral l rectangles 

KLMN and K'L'M'N', a longitudinal force fBc pushes the wire BC to the left. The for­

ces of reaction fKL and fK'L' whose sum is equal and opposite to the force f 8c act 

on the wires KL and K'L'. 

E D 

fsc ---
$B - C fcD ----

~ 

fcD' 

E' D' 

Fig. 78. Third Nicolaev's experiment. 
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Fig. 79. Fourth Ni col aev's experi rrent. 

If we ass urre that the wires KN and K 'N' are very near to the wire AD and that 

all three rectangular loops are big enough, the only force which acts on the cur­

rent wire BC will be generated by the currents in the wires KL and K'L'. Easily can 

be seen that when the currents flow in the indicated directions (or all currents in 

the opposite directions) the longitudinal force fBc will push the wire BC to the 

left. The forces of reaction fKL and fK'L' will act on the wires KL and K'L' poin­

ting to the right. 

The sarre will be the picture if only one of the srrall rectangular loops will be 

present. However when both small rectangular loops are there, the experirrent is very 

symmetric and all non-longitudinal forces acting on the wire BC are balanced. 

58. 7. FIFTH NICOLAEV'S EXPERIMENT (fig. 80). 

The wire AD, whose part BC has sliding contacts at its ends, goes along the axis 

of a toroidal solenoid. The cross-section of the torus by a plane containing its axis 

is shown in fig.SO, where also two of the windings lying in the cross-section plane 

are shown with the directions of the currents flowing in the windings.· 

As it can be concluded from formula (18.28) for a very long cylindrical solenoid, 

if there is a toroidal solenoid where the relation between its radius Rand the ra­

dius of the windings r is large, we can assurre that the magnetic intensity B is dif­

ferent from zero only in the toroidal solenoid and is equal to zero outside the so­

lenoid. Thus on a current elerrent placed outside the torus (such is the wire BC) no· 

magnetic (i.e., vector magnetic) forces can act. 

Meanwhile Nicolaev has observed that a magnetic force acts on the wire BC pushing 
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Fig. 80. Fifth Nicolaev's experiment. 

it to the left. The forces of reaction f' and f" act on the current wires of the left 

torus base. The explanation of the effect is to be done exactly as in the fourth Ni~ 

colaev 's experiment .. 

The fifth Nicolaev's experiment shows clearly that the magnetic field is defined 

not only by the vector magnetic intensity B given by the third formula (21.1) but 

also the scalar magnetic intensity S given by the formula (24.14) must be taken into 

account. And this experiment shows that the scalar magnetic intensity generated by a 

toroidal solenoid is different from zero along the axis of the toroid. 

58.8. SIXTH NICOLAEV'S EXPERIMENT (fig. 81). 

A high-voltage tube with glow discharge was put along the axis of a toroidal sole­

noid. By sending current in the solenoid and by changing its direction Nicolaev ob­

served that the dark cathode space changes its length. 

The effect is to be explained by the action of the scalar magnetic field on the 

electrons flying from the cathode, C, to the anode, A. As the charge of the electron, 

- qe, is a negative quantity, by putting it in the equation (24. 13) and taking into 

account only its last term (see also formula (24. 14)), we obtain for the force ac­

ting on the electron 

f = (-qev)S = - qevS(-x) = qevSx, (58.3) 

where vis the velocity of the electron pojnting from the cathode C to the anode A, 

and S is the scalar magnetic intensity generated by the toroida·l solenoid. As for 
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Fig. 81. Sixth Nicolaev's experiment. 

the indicated direction of the current in the toroidal solenoid the scalar rragnetic 

intensity along its axis is negative (see figs. 79 and 80), the force acting on the 

electron will point in the - x direction (to the left) and will thus accelerate the 

electrons. Consequently when switching on current in the solenoid in the indicated 

direction, the dark cathode space will become shorter. If we change the direction 

of the current in the solenoid, the velocity of the electrons will be diminished 

and the dark cathode space will become longer. 

All these effects have been observed by Genadi Nicolaev. 

58.9. SEVENTH NIC0LAEV'S EXPERIMENT (fig. 82). 

The half circular wire 1 with sliding contacts at its ends, in which the current 

flows clockwsie, is set into a clockwise rotation when the current in the coaxial 

half-circular solenoid 2 flows clockwise (thus when the reader looks at the south 

pole of the solenoid). The force f acting on the half-circular wire has a negative 

moment along the axis pointing to the reader, while the force of reaction f' acting 

on the diametral wires of the solenoid has a positive tOOJTent about the same axis. 

If we .should rotate fig. 82 over 90° in a clockwise direction and we should then 

compare it with fig. 73, we shall see that the rotational variation of Hering's ex­

periment and the seventh Nicolaev's experirent have rrany comt00n features. The cir­

cular currents in both experirents have the same directions but as the radial cur­

rents have opposite directions, of course, t~e 11Dtion of the circular wire will be 

the opposfte one. Take into account that the half-circular current in Nicolaev's ex­

periment belonging to the half circular solenoid (which is missing in Herning's ex­

pel".iment) is of no importance, as it cannot generate longitudinal forces on the half-
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Fig. 82. Seventh Nicolaev's experirrent. 

circular current wire with the sliding contacts (Nicolaev's formula!!!). 

The electromagnet in fig. 82 can be replaced by a permanent magnet; the effect will 

remain the sarre. If putting the north pole of the half-circular magnet to point to 

the reader, the ve 1 oci ty of the ha 1 f-ci rcul ar wire 1 wi 11 change to the opposite. 

N 

s 

Fig. 83. Eighth Ni col aev 's experi rrent. 
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58. 10. EIGHTH NJC0LAEV'S EXPERIMENT. 

The circular wire 1 with sliding contacts at its upper and lower points, in which 

the current flows in the indicated downwards direction, is set into a clockwise ro­

ta ti on when the currents in the two coaxial half-circular solenoids 2 and 3 flow in 

such a way that the reader sees the north pole of solenoid 2 and the south pole ·of 

solenoid 3. The forces f acting on the half-circular wire have a negative noment 

about the axis of the solenoids pointing to the reader, while the forces of reaction 

f' acting on the diametral wires of the solenoids have a positive moment about the 

same axis. 

Let present at the end the following general remark: All above described Nicola­

ev's experiments give the same effects if the currents will be alternating. If there 

are more than one current sour~es, their frequencies must be the same and the phase 

angle between the currents must be equal to zero. 

59. THE S-M0T0R M0DRIL0 

The first electromotor driven by a scalar magnetic field was constructed by me(57 ) 

and called M0DRIL0 (M0tor DRiven by L0ngitudinal forces) on the principle of Nicola­

ev's second experiment (see fig. 77). Its photograph is shown in fig. 84. 

Direct electric tension of about 2000 V was produced by a cascade feeded by the 

mains (~220 V). The cascade was done by 11 electrolyte condensers of 470 µF each and 

11 high-current diodes. This high tension was conducted by the horizontal (left) 

Fig. 84. Photograph of the $-motor M0DRIL0. 
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and vertical (right) wires to the end points of a chord (spanned by an angle of 450) 

of the rotating disk with radius R = 6 cm, RBde by plastic material (PVC) whose 

lower surface was covered by an Al-foil (0.5 m of thickness). The distance between 

the pojnted ends of the wires and the disk was rraintained less than 0.5 mm, so that 

sparks jull1)ed every now and then, and current flew along the disk's chord. The 

height of the horizontal wire was fixed. Then the height of the rotor was adjusted 

and as last was adjusted the height of the vertical wire which had a thread at its 

bottom. The drawing of the rotor is shown in fig. 85 at the left and its l0;1er and 

upper suspensions are shown at the right in two times greater sizes. A small but 

strong enough ring magnet was fixed to the case and another one to the rotor's axle. 

By moving the upper RBgnet up-down on the axle, one settles the strength of the re­

pulsive force, so that the rotor is practically suspended in air and the jewel bea­

rings serve only to preserve its unstable equilibrium. 

The force which will act on the chord (for very long-horizontal and vertical 

wires) is given by formula (26.2) - according to Nicolaev's formula!!! - and it is 

obvious that exact calculation of this force for the geometry of~ experiment was 

not possible. 

When sparks began to jull1) the average current in the high-tension circuit had a 

certain value quasi equal to the value of the average current in the alternating 

circuit. The average current could be varied by varying the buffer resistance in 

the alterating current circuit (for which I used~ cooking plate), while the dura­

tion of the direct current pulses and the respective current maxima could be varied 

by varying the buffer resistance in the high-tension (i.e., direct-current) circuit. 

At an average current Iav = 5 A the disk came into rotation. If the d.c. buffer 

resistance was lower (i.e., the maxima of the current pulses higher), motion was 

observed at lower average current. It was difficult to say which were the maxima of 

the current pulses but (at low dall1)ing - see beneath) they were surely hundreds of 

all1)eres. On the other side, as the d.c. circuit had not only capacitance and resis­

tance but also some inductane, the current flowing at a discharge of the condenser 

was oscillating dall1)ed current and at lower buffer resistance the damping was less, 

so that the same current could a couple of times pass through the motor. I must how­

ever note that some parts of the "opposite" oscillating currents passed through the 

diodes of the cascade. Thus at low dall1)ing the current through the motor was not di­

rect but alternating or, at least, pulsating. 

The way of making sliding contacts by the help of sparks was not good, as the 

sparks melted the metal and the Al-disk was "binded" by the pointed ends of the ho­

rizontal and vertical wires. As the disk's periphery was slightly wobbling, to evade 

such a binding, the di stance between wires and disk was to be done greater. In such 

a case, however,. sparks jull1)ed only at the "lower wobbling" or no sparks jull1)ed at 

all. 

As shown in Sect. 29, in any electromotor driven by a scalar magnetic intensity, 
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i.e., in any S-rootor, not back but forth tension is to be .induced. Let us consider 

this problem once more on the exarrple of the S-rootor t-ODRILO. 

Let us take a reference frarre with abscissa pointing from the horizontal wire to 

the_ vertical wire ( i .e. , from le ft to· right). Let us sup pose that the current is 

flowing from left to right along the 'chord, i.e., in the +x-direction. From the. 

first term of formula (24.12) (see also the last term in formula (24.13) and formu­

la (24.14 )) we see that we must have S < 0, Thus, again according to formulas 

(24.13) and (24.14), as v, the velocity of the current conducting charges which are 

positive, is positive pointing from left to right, the part of the disk which is 

near to the reader must rotate from right to left. This sense of rotation was obser­

ved in the JOOtor MODRILO. 

Now to the induced tension .. When the disk rotates from right to. left (I shall 

omit further the words "the part of the disk near to the reader"), the convection 

current of the current conducting charges which, I repeat, we consider as positive 

will point from right to left. Then the induced electric intensity, again according 

to formulas (24.13) and (24.14), at the condition S < 0 will point from left to 

right, i.e., along the direction in which the driving electric intensity acts. Con­

sequently the induced electric intensity and tension will not oppose the driving 

electric intensity and tension but will support them. 

Because of the high driving tension applied to the rootor MODRILO, the induced 

tension could not be measured. 

0 

!S 

Fig. 85. Diagram of the rootor MODRILO. 
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60. THE S-MACHINE SIBERRIAN C0LIU 

The perpetuum nobile which I intend to construct in the near future (after an 

operation I must go certain tine with clutches on one leg and my experinental ac­

tivity is drastically reduced) will be liased on the eighth Nicolaev's experinent 

(see Sect. 58.10)). For honouring Nicolaev who lives in the town Tomsk in Siberia, 

I called this wonderful S-machine (it is notor, generator and and easy pVLpe:tuum 

mob.lte) SIBERIAN C0LIU. 

The proposed drawing of Siberian Coliu is shown in fig. 86. 

A strong cylindrical permanent magnet is cut in two pices across its dianetral 

plane and again a cylindrical magnet is built but with oppos1te poles on every half 

surface. A netal ring can rotate at the middle of this cylindrical magnet. At two 

dianetrically opposite points, at 90° from the "cutting plane" of the cylindrical 

magne_t, there are sliding contacts- and the circuit is c·losed by the rheostat R. A 

TI-form "bracket" done of insulating material is fixed to the rotating ring and by 

one's fingers one can set the netal ring in rotation. 

21 

n 
.....,___.,,, 

Fig. 86. The S-machine Siberian Coliu wi.th solid rotating ring. 

R 
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The machine works as an S-IOCltor if current from an externa 1 source wi 11 be sent 

in the circuit. At the indicated direction of the current ·(anti-clockwise in the 

half-circle which is near to the reader) the rotation of the ring, at the indicated 

polarities of the half-circular magnets, will be clockwise (see fig. 83). 

The machine works as an S-generator if the disk will be set in rotation by one's 

fingers. At the indicated rotation of the ring the induced current will have the in­

dicated direction. 

As it was calculated in Sect. 29, if the driving mechanical torque will be elimi­

nated and the driving torque due to the induced current will be equal (and opposite) 

to the friction torque, the rmchine will rotate eternally. The produced ·thermal 

electric power will be equal to the produced mechanical power and the latter will 

be equal to the friction power. If the friction power is finally transformed into 

heat, then in the S-generators two powers will be produced: the thermal elecric po­

wer in the circuit and the thermal friction power. A~ equal driving mechanical and 

friction torques these two powers will be equal. 

With the rheostat R we settle such a current in the circuit which determines this 

R 

p 

Fig. 87. The S-rmchine Siberian Coliu with liquid rotating ring. 
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angular velocity at which the driving and fricti?n torques are equal. If, for cer­

tain reasons, the rotor will begin to increase its velocity· (i.e., the generated 

torque will becorre larger than the friction torque), we introduce with the rheostat 

R higher resistance in the circuit and decrease the angular velocity. If the rotor 

will begin to decrease its velocity, we decrease by the help of R the resistance of 

the circuit. 

Siberian Coliu can be done in the most silll)le way if the rretal ring will be re­

placed by a circular trough filled with rrercury (fig. 87). Then by the help of the 

current taken from the external source of driving tension Udr' we set the !fM!rcury 

in the trough in rotation. With the increase of the rrercury's rotational velocity 

we exclude gradually the driving tension by the help of the respective potentiorre­

ter P. Then the "equilibrium" angular velocity for eternal rotation is settled by 

the help of the rheostat R. 

MY realization of Siberian Coli u with rrercury ring is shown in fig. 88. 

The source of driving current for setting mercury in rotation was a 7.2 V Ni-Cd 

accumulator. The diarreter of the neodymium magnet which was cut in two half-circu­

lar l!Bgnets was 3 cm. I did not use potentiorretric insertion of the driving tension 

and with the left switch the driving tension was sitched on and off, while the right 

switch served for short-circuiting or interrupting the circuit. With the rheostat 

on th·e right the resistance of the circuit was changed. 

The rrercury carre into rotation at a current of sorre 40 A, however the rotation 

was. not laminar and bad. Observing the bad notion of rrercury, I rerrenbered ll1Y l!B­

chine ADAM with Faraday disk filled with rrercury (see Sect. 52). There exactly the 

bad quality of rrercury in transmitting electrical forces into ponderomotive forces 

was used for increasing the over unity effect of the Faraday disk generator. But in 

the generator Siberian Coliu I am aiming the opposite: to have good transmission of 

electric forces into ponderorotive forces, as only at high velocities of the rrercury 

a high forth tension will be induced. Also the resistance of rrercury (18 11{1) was ve­

ry high. 

Thus I put a copper ring to swim in the rrercury trough (an exact duplicate of 

this ring can be seen at the right side of the photograph). Now on the copper ring 

an amalgam was built and it carre in smooth slow rotation at sorre 40 A. The resistance 

of the rrercury trough with the copper ring was R = 5 ml. 

The induced tension at this slow rotational velocity was about Uind = 0.2 mV and 

by switching off the driving tension I induced current of sorre I= Uind/R = 40 

mA. Thus to be able to run the machine as a perpetuum robile, I have to reduce the 

resistance of the whole circuit to 5 µn, what is a problem but not very difficult. 

Perhaps ll1Y IIBChine Siberian Coliu II will be made with an electromagnet with lar­

ger radius and with copper ring with larger cross-section. 
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Fig. 88. Photograph of the S-machine Siberean Coliu. 

61. THE EXPERIMENT DEMONSTRATING THAT POLARIZATION CURRENT DOES NOT 
ACT WITH POTENTIAL FORCES 

As already said (see Sect. 30), polarization current does not act with potential 
magnetic forces on other currents, i.e., does not generate magnetic intensity field. 
~e schene of the experinent with which I demonstrated this assertion is shown in 
fig. 89. 

The space of a circular plates condenser with a variable distance d between the 
plates, to which alternating current along long enough axial wires was conducted, 
was filled by the dielectric V5U 153 UL of the SIEMENS corrpany (e = 10,000 when 
pressed, as in f11Y experinent). Changeable inductive coils with thick wire and low 
ohmic resistance were inserted in the circuit and at any specific capacitance a res­
pective inductance was inserted, so that the circuit remained always at resonance at 
the used 50 Hz frequency of tension supplied by a variable transforner. 

The magnetic intensity produced only by the "positive" pulses of the current was 
neasured by the help of a Hall sand put at a constant distance r = 10 cm.'from the 
central point of the condenser's axis. The distance between the plates was changed ... 
from d = 0 cm to d = 6 cm and by changing the tension applied (and the induction 
coils) the current was always maintained at I = 10 mA. The radius of the plates was 
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R = 4 cm. The output of the Hall sand was arrpl ified and then led to a galvanometer. 

As the current flowing along the wires was always oointained at the same value, 

the polarization current "flowing" between the plates of the condenser had always 

the same value and, according to Maxwell's concepts, the oognetic field at the same 

distance from the axis of the condenser had to remain constant. 

According to rqy concepts, the oognetic intensity had to decrease, as the distance 

of interruption of the conduction current increased. 

The calculation of the effect can be done easily. 

Let us put a straight wire of length don the x-axis, so that its middle is at 

x = 0. The magnetic potential generated by a current I flowing in the wire at a dis­

tance y along the y-axis, according to the first formula (18.15), will be, conside­

ring the potential of the whole wire as twice the potential of its right half, 

d/2 
Ad= 2(µ /411) f Idxx/(x2 + /) 112 = (µ/211)Arsinh(d/2y)x. (61.1) 

0 0 

For the ma·gnet i c intensity we obtain 

= (l1o/211)Id z B "' rotAd 
y(ci2 + 4/)1/2 

(61.2) 

Thus the magnetic intensity generated by an infinitely long wire at a distance 

y "'r from it will be (see formula (21.12) 

B
00 

"' (µ
0

1/211r)z. (61. 3) 

If now an infinitely long wire is interrupted in the middle by a condenser, the 

distance between whose plates is d (fig. 89), the magnitude of the magnetic intensi­

ty at a point distance r from the central point of the condenser will be (write in 

formula (61.2) y "' r) 

B "'B
00 

- Bd"' (µ
0

I/211r){l -d(ci2 + 4/f 112}. (61.4) 

As the measurements were only relative, the galvanometer was not calibrated as 

indicator of magnetic intensity and for any distance d the ratio B/B
0 

(as ratio of 

the galvanometer's readings) was registered, where B
0 

was the indication of the gal­

vanometer for d "' 0 and B for distance d between the plates. 

The measured ratios are given in table 61.1, where also the ratios according to 

Maxwell's and rqy concepts are presented. As the fluctuations of the galvanometer 

were less than 1%, the discrepancies between theory and experiment (which did not 

surpass 40% for d "' 1 cm and fell to zero for d "' 6 cm) are explained by the fact 

that the ratio R/d was not tending to zero (and for short distances, d,was higher). 

I wrote that according to "Maxwell's theory" the ratios in table 61.1 must remain 

equal to unity. What signifies "Maxwell's theory" is not clear enough, but if we look 

at the Maxwell-Lorentz equations (30. 15), we shall see that the ratio must decrease 

with the increase of the distance between the plates. Indeed, if the current in the 
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Fig. 89. Diagram of the experirrent showing that polarization current does not 
act with potential magnetic forces on other currents. 

Table 61.1 

d Ratios B /B
0 

(cm) 
Maxwell's theory Author's theory Experiment 

1 1.00 0.95 0.97 

2 1.00 0.90 0.92 

3 1.00 0.85 0.86 

4 1.00 0.80 0.81 

5 1.00 0. 76 0.77 

6 1.00 o. 71 0. 71 

wires remains constant, this signifies that at any distanced between the condenser's 

plates the sarre _aroount of charges will arrive at the plates. According to equation 

( 30. 12), taking into account ( 30. 15), we sha 11 have 

6 B.dr = (£
0

£/4rr)(a/at)J E.dS + (£
0
/4rr)(a/at) J E.dS, 

L S0 S-S 0 

(61. 5) 

where S0 is the cross-section of the cylindrical dielectric which is equal to the 

surface of the condenser's plates, Sis a circle with radius rand Lis its circum-

ference. The electric intensity Eis determined only by the quantity of charges on 
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the plates and by the distance between the plates. If the quantity of charges re­

lllclins the sarre, but the distance increases, E in (61.5) will decrease. Thus when cal­

culating B from (61.5), we shall obtain that it will also decrease. Thus the Maxwell­

Lorentz equations are against the assertiona of the Maxwellians (or of this people 

who think of being "Maxwellians"). The lllclgnetic field is generated only by the char­

ges flowing to the plates of the condenser, as also the Maxwell-Lorentz equations 

show. 
As Marx shouted in a London pub "I am not a Marxist, I am not a Marxist" , perhaps 

Maxwell has also shouted in an Aberdeen pub"! am not a Maxwellian, I am not a Max-

wellian". 
The report on the above experirrent was published in Ref. 25, p. 317. 

62. THE EXPERIMENT DEMONSTRATING THAT POLARIZATION CURRENT DOES NOT REACT 
WITH KINETIC FORCES 

It was said in Sect. 30 that polarization current does not react with kinetic for­

ces to the action of other currents. The di a gram of the e xpe ri rrent with which I de­

monstrated this assertion is shown in fig. 90 and the photograph in fig. 91. 
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Fig. 90. Diagram of the experirrent showing that polarization current does not 
react with kinetic forces to the magnetic action of other currents. 
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My experiirent, as a matter of fact, was a substantially irrproved repetition of 

Whitehead's experiirent( 54 ) which today is totally forgotten, or exactly said, put 

under the rug, as it contradicts the assertion of the "Maxwellians" that polariza­

tion current is current. 

The essence of ITo/ experiirent is the following: In the orifice of a big cylindri­

cal coil a cylindrical condenser is put. The dielectric between the plates can ro­

tate. Alternating current is sent through the condenser which then goes through the 

windings of the coil. If the polarization current is current and reacts with kine­

tic forces to the magnetic action of other currents, the cylindrical dielectric be­

tween the condenser's plates must begin to rotate. However no motion was observed 

(as were also the observations of Whitehead( 64 l). 
To show that the experiment_ had the necessary sensitivity, the dielectric was ex­

changed by metal having the same form and weight and exactly the sa,re_ current was 

sent. In this case a rotation was observed. 

The sizes of the coil were: height H = 260·mm (as there were.two plastic covers 

with thickness 5 mm each up and down, the height of the copper was H' = 250 mm), 

external radius Re = 130 mm, internal radius Ri = 64 mm (as there was an internal 

plastic cylinder, the internal radius of the copper was 69 mm). The applied tension 

was U = 300 V. 

Fig. 91. Photograph of the experiirent demonstrating that polarization current 
does not react with kinetic forces to external magnetic fields. 
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The coil had N = 140,000 windings of a copper wire with diameter 0.3 mm and ohm­

ic resistance R = 20,000 n. The flowing current at resonance was thus I = U/R = 15 

mA and the magnetic intensity generated by the coil in its internal part was, accor­

ding t~ formula (18.281 B = {N/H')I = 8.4x1Q-3 A m-l = 0.011 T. 

The sizes of the condenser were: height h = 80 mni, internal radius (i.e., exter­

nal radius of the internal cylindrical electrode) ri = 24 mm, external radius (i.e., 

internal radius of the external cylindrical electrode) re= 56 mm. 

Two '!rotors" were made which were put in the condenser's gap and could rotate on 

two ball-bearings, as shown in fig. 90. 

The first "rotor" was of dielectric. The powder substance Y5U 153 UL was pressed 

in a cylindrical box with metal cylindrical walls and plastic lids. The metal walls 

were pretty thin with thickness~= 1.5 mm. The distance between these walls and the 

condenser's plates was cS = 0.4 mm. 

By applying a tension with variable frequency, it was established that a reso­

nance took place very nearly to the frequency v = 200 Hz. As the coil had an induc­

tance L = 3700 H, the capacitance of the condenser was C = 1/4TT2v2L = 0.17 nF. 

The capacitance C was calculated in the following way: The condenser was conside­

red as three cylindrical condensers, having the same height h = 80 mm, connected in 

series. The first was a vacuum condenser with external and internal radii r~ =re= 

56 mm, ri = re - cS = 55.6 mm. The second was a condenser filled with dielectric with 

permittivity£= 10,000 and it was assumed, for simplicity, that the thin metal 

walls had the same permittivity. Thus its external and internal radii were r; = ri 

55.6 mm, rr = ri + cS = 24.4 mm. The third condenser was again a vacuum condenser 

with external and internal radii r;' = rr = 24.4 mm, rf = ri = 24 mm. The resultant 

capacitance was (see formulas (19.22) and (17.9)) 

1/C = 1/C' + 1/C" + 1/C"' = (1/2TT£
0

h){ln{r~/rO + l/£)1n(r;;rp + ln(r;'/r;" )}, 

(62.1) 

and, obviously, the capacitance C", as very big with respect to the capacitances C' 

and C'", could be neglected, so that the calculation gave C = 0.19 nF. 

The second "rotor" was of metal and had exactly the same sizes of the cylindri­

cal plates and the same weight as the first one. Formula {62.1), where capacitance 

C" is to be put equal to- infinity, obviously, will yield the same result for the 

common capacitance C. 

When the metal "rotor" was suspended in the condenser's gap, a slow rotation was 

observed of about half a revolution per second. When the dielectric "rotor" was sus­

pended no rotation was observed. Only at certain positions of the dielectric "rotor" 

sometimes there was a small displacement of about 4 -5 degrees when closing the cir­

cuit. These feeble impulses are to be explained by the torque acting on the conduc­

ting current in the thin metal walls. 

The torque acting on the metal "rotor" will be 
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re re 2 2 
M = If rx(IdrxB)I = J r(Idr)B = (l/2)IB(r~ - r'.' ). 

r~ r~ 1 
1 l 

(62.2) 

By putting here I= 15 mA, B = 0.011 T, re 55.6 rrrn, rf = 24.4 mm, we obtain 

M =· 2 .06xl0- 7 Nm = 2 dyne cm. 

Consequently, remembering that~= 1.5 mm was the thickness of the metal walls 

of the dielectric box, one shall have for the torque acting on the external metal 

wall 

M' = (l/2)IB{r"
2 

- (r" - ~h = !Bre"~. e e 

By putting here the relevant figures, we find for the torque M' 

O. 14 dyne cm. 

The report on the above experiment was published in Ref. 65. 

63. THE MACHINE SUL-CUB WITHOUT STATOR 

(62. 3) 

-7 0.14xl0 Nm= 

The fact that polarization current does not react with kinetic forces to exter­

nal magnetic fields (B-fields) was used by me to make the uneffective BUL-CUB ma­

chine (see fig. 30) effective in a very tricky way. 

I have shown (see formulas (48. 7), (48.8) and the text after (48.8)) that the 

torques acting on the wires ab in the magnet's gap and on the wires cd in the two 

yoke's gaps are equal and oppositely directed, so that the BUL-CUB rrachine in the 

form shown in fig. 30 cannot rotate; for this reason I called it the "uneffective 

SUL-CUB machine". 

If now we exchange the conduction current in the yoke's gaps by polarization cur­

rent, as there wi 11 be no torque on the po 1 ari za ti on current, only the torque acting_ 

on the conduction current in the magnet's gap will remain, and the machine will be­

gin to rotate as a whole. Taking into account that the SUL-CUB machine will have on­

ly rotor and no stator, I called it the SUL-CUB MACHINE WITHOUT STATOR. It is obviol.6 

that this machine violates the ang_ular momentum conservation law. 

The same machine when rotated as generator can help us to answer the question whe­

ther an electric tension will appear across a dielectric which is noved in a magnetic 

field, because of the action of the motional induction (see the third equation (21.1)). 

Such an experirrent was done for the first time by Wilson( 66 ) with a positive an­

swer. It is obvious that a positive effect will appear only for dielectrics with po­

larized molecules. In a dielectric where the molecules becorre polarized only under 

the action of an external electric field, of course, the effect must be null. Thus 

fT1Y machine reported in Sect. 62 can serve to establish whether the dielectric has 

polarized or non-polarized molecules. For this reason the dielectric between the 

plates of the cylindrical condenser in fig. 89 is to be rotated by an external 

torque in an alternating magnetic field of the cylindrical magnet. If an alternating 

tension will appear in the circwit, the dielectric has polarized molecules, if not, 
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the roolecules of the dielectric becorre polar.ized only in an external electric field. 

My BUL-CUB machine without stator (figs. 92 and 93) consists of a coil wound on a 

cylindrical core closed by a cylindrical yoke and two circular lids. The machine can 

rotate on the end points of two clock axles. The sharpened extremities of the axle 

were imnersed in cups filled with nercury (in fig. 92 the cups with rrercury are not 

indicated!). The rotor was "suspended in air" by the help of two ring magnets as in 

fig. 85 (the two ring magnets are not indicated in fig. 92! ). 
The Faraday-Barlow disk (the disk in which the radial current flew) was of brass. 

The center of the disk was connected, through the lower pointed axle, with the one 

electrode, L, of the delivered tension (when the machine works as generator). The 

periphery of the Faraday-Barlow disk was fixed to a brass ring whose surface "look­

ing down" presented the upper plate of a ring condenser. The lower plate of this 

ring condenser was connected via sliding contacts with the other electrode, K, of 

the delivered tension. The lower lid of the yoke had a ring gap in which the die­

lectric of the condenser was placed. One end of the coi 1 's wire was connected 

through the upper pointed axle with the electrode, M, of the driving tension (when 

17'u21ron 
(powder} 

~ Plastic 

RSS,'SJ Brass 

~ Ba Ti o3 

- Contact 

Fig. 92. Diagram of the BUL-CUB machine without stator. 
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the machine works as a motor), while the other end makes contact with the lower con­

denser's plate and thus via the sliding contacts reaches the other electrode, K, of 

the driving tension. 

Let us see first how the machine works as a generator. If the condenser's plates 

will be connected by a wire, a tension will be induced there which will be equal and 

oppositely directed to the tension induced in the Faraday disk (see formulas (48.4) 

and (48.5)), and the net tension delivered to the electrodes Kand L will be null. 

When there is a dielectric with polarized roolecules in the gap of the lower lid, 

again null net tension will be induced. However, if the dielectric has non-polarized 

molecules, the net tension will be equal to the tension induced in the Faraday disk. 

Let us then see how the machine works as a motor. The driving tension can be ap­

plied in parallel (in such a case the electrodes Mand Lare to be connected shortly) 

or in series (in such a case the sliding contacts must be taken away and the driving 

tension is to be applied to the electrodes Mand L} .. J used only the series circuit, 

.as the produced torque was very feeble and the friction was to be reduced to the pos­

sible minimum. As the torque on the radial currents in the Barlow disk is proportio­

nal to the product of the currents flowing along the disk's radii and in the coil, 

this torque is unidirectional when the driving tension is alternating. 

If the upper and lower condenser's plates will be connected by a wire, the torque 

on this wire will be equal and opposite to the torque acting on the disk, and no ro­

tation is possible, as already said above. However when there is a dielectric in the 

gap of the lower lid, no torque will act on the polarization current "flowing" in the 

Fig. 93. Photograph of the BUL-CUB machine without stator with dismounted lower lid. 
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dielectric. And the body begins to rotate due to the action of "internal forces", 

violating thus the angular momentum conservation law. 

I shall calculate the ponderonotive (kinetic) torques acting on the conduction 

current in the magnet's gap and on the polarization current in the yoke's gap. Let 

us take a reference frame with its origin at the axis of the apparatus, the x-axis 

pointiHg.to the reader, the y-axis pointing to the right, and the z-axis pointing 

upwards. If the magnetic intensity in the core of the electromagnet is B pointing 

upwards, the radius of the core is r, and the current flowing from the axis to the 

periphery is I, the torque (noment of force) acting on the radial conduction cur­

rent wi 11 be 
r ,.r 2 A 

Jrx(IdrxB) = - IBzJrdr = - (!Br /2)z. (63.1) 
0 0 

For simplicity sake, I shall rrake the calculation, supposing that the dielectric 
is vacuum, i.e., reducing the polarization current to displacement current. If the 

electric intensity between the plates of the condenser is E, at the above direction 

of the current, clE/at wi 11 point downwards. Thus if the di stance between the conden­

ser's plates is h (I assume it equal to the height of the cross-section of the gap 

in the lower lid) and the internal and external radii of the condenser's plates 

(i.e., of the gap) are Ri and Re, the torque acting on the E_isplacement E_Urrent will 

be 

Mdc = Rmiddlex{7r(R; -R~)h{E
0

clE/clt)xB'} = {l/2){R;+Rr)TI(R; -R~)hE
0

(aE/at)B'z, (63.2). 

where B' (pointing to the axis of the apparatus) is the magnetic intensity in the 

gap, and we shall assume that the whole magnetic field is closed in the iron and in 

the gap, thus that the magnetic fluxes in the core and in the gap are equal, so that 

8 1 = r2s;h(Ri +Rel• {63.3) 

Taking further into account that (see formulas (17.1) and (17.5)) 

aE/at = I/Ch. (63.4) 

where C is the capacitance of the capacitor, for which the displacement current is 

E0 aE/at, we obtain from the last three equations Mee= - Mdc· 

The torque {63.2) is, however, fictitious, as neither the displacement current 

nor the polarization current can react with kinetic force to the action of the mag­

netic intensity B'. Thus only the torque (63.1) remains to act, setting the whole 

system in rotation. 

In rey experiment the core and the yoke were made of powder soft iron material 

Corovac EF 6880 delivered by the VACUUMSCHMELZE coll\)any which was not current con­

ducting and thus eddy currents could not be induced in it. I had Ri = 3 cm, Re = 4 

cm, h = 0.2 cm {height of the air gap in the yoke), d = 0.4 cm (distance between 

the capacitor's plates). The dielectric of the capacitor was barium titanate with 

permittivity E = 10,000 (the value was not measured). For smooth plates the capa-
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citance is C = £0 £11(% - RT)/d. I etched the condenser's plates making them rough 

and increasing thus the surface and the capacitance, which, measured between the 

electrodes Kand L, was C = 430 nF. A condenser with capacitance 470 nF brought 

the.magnet coil into resonance if a 50-Hz alternating tension was applied, so that 

the inductivity of the coil was 22 H. 'By applying the mains (~220 V), the current 

flowing in the coil was I = 0.23 A, and thus the impedance of the coil was R = 960 

n. The calculation of the magnetic intensity across the Faraday-Barlow disk accor­

ding to the formula (see (20.11)) 

(63.5) 

where 4> is the magnetic flux, r = 2 cm is the radius of the Faraday-Barlow disk, 

N = 12,000 is the nunber of the turns in the coil, and Li• Si, µi are the lengths, 

the cross-sections and the permeabilities of the different parts of the yoke (µair= 

1, Jliron = 200), gave the value B = 0.072 T. 

First I ran the machine as a generator driving it with a d.c. moto_r which rubbed 

the upper lid. The tension which was expected to be induced along the disk's radius 

during a rotation with a rate N = 20 rev/sec had to be U = 11Br2N = 1.8 mV. I measu­

red U = 1. 1 mV, but the noise of the sliding contacts was of the same order. 

Then I ran the machine as a motor applying a 50-Hz tension of 1500 V from a trans­

former to the electrodes L and M and taking away the sliding contacts. The flowing 

current was I = 1.5 A and the body cameinto a very slow rotation. 

-The report on the above experiment was published in Ref. 67. 

64. THE BALL-BEARING MOTOR 

It is alroost unknown that if direct or alternating current passes through the 

ball-bearings of an axle, it is set in rotation. In the few papers where this effect 

is discussed, the torque is explained as an electromagnetic effect. Yet the torque 

is due to thermal extension of the balls in their bearings at the points of contact 

with the bearing races. 

The arrangement of the simplest BALL-BEARING MOTOR is given in fig. 94, where the 

inner races rotate. With the same ball-bearings, a bigger torque can be obtained by 

rotating the outer races. In such a case the axle must be made of two electrically 

insulated parts, and the current goes through a metal cylinder connecting the outer 

races of both ball-bearings. Such are the small and big ball-bearing motors presen­

ted in fig. 95. 

I have established that the ball-bearing rootor is not an electromagnetic motor 

but a thermal engine. Here the expanding ~ubstance leading to mechanical rootion is 

steel, while the expanding substance in all thermal engines used by humanity is ga­

seous. 

There is, however, another much more important difference; the motion of the con-
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ventional thermal engine is along the direction of expansion of the heated substance, 

while in the ball-bearing thermal engine it is at right angles to the direction of 

expansion of the heated substance. Consequently, in gaseous thermal engines, the gas 

cools during the expansion and the kinetic energy acquired by the "piston" is equal 

to the heat lost by the expanding gas. This is not the case in the ball-bearing roo­

tor. Here not the whole ball becomes hot but only a small part of it which touches 

the race at a point contact where the ohmic resistance is much higher than the re­

sistance across the ball. Only this small "contact part" of the ball dilates; and 

the dilation is very small, only a few microns. (Of course, I have not measured the 

dilatation, I only presume that it is a couple of microns.) Since the balls and the 

races are made of very hard steel, a slightly ellipsoidal ball produces a huge 

torque when one of the races rotates with respect to the other. 

Usually a push is needed to start the ball-bearing rootor. However, on occasions, 

it does start spontaneously (with a greater probability·at greater bores) because 

the surface of the races is not absolutely smooth. With absolute smoothness and ge­

ometrical perfection, spontaneous starting is impossible. 

During rotation the ball's "bulge" moves from the one race to the other, the 

local overheating is absorbed by the ball and the radius of the "bulge" becomes 

equal to the radius of the whole ball. At the new point of contact, when current 

passes and ohmic heat is produced, the radius of the contact becomes again bigger 

than the radius of the whole ball and again a driving torque appears. Thus, as a re­

sult of the mechanical motion, the ball is not cooled; and consequently, in the 

ball-bearing thermal engine, heat is not transformed into kinetic energy. The whole 

heat which the current delivers remains in the metal substance of the machine and 

increases its temperature. If the ohmic resistance between balls and races is the 

same both at rest and in rotation, the heat produced and stored in the metal of the 

Fig. 94. Diagram of the ball-bearing motor with cross-section of the bearings. 
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machine will be the same at rest and rotation. This resistance, however, increases 

at rotation; but with further increase of the velocity the increase of resistance 

is very slight. 

I established that the ball-bearing motor produces the same amount of heat at 

rest and rotation in the following manner. I measured for a definite time the tem­

perature increase in a calorimeter in which the llXltor was maintained at rest, apply­

ing a tension U and registering the current I. Thus the resistance of the whole llXl­

tor was R = U/I. Then I started the llXltor and applied a tension U' such that at the 
new resistance R' the current I'= U'/R' was such that UI = U'I'; i.e., in both ca­

ses I applied exactly the same electric power. According to the energy conservation 
law, in both cases the temperature increase of the calorimeter had to be the. same, 

as in both cases the same amount of electric energy was put in the machine. 
I recorded, however, that in the second case the temperature increase of the ca­

lorimeter was higher. Thus I concluded that in both cases the produced ohmic heat 

was the same; however in the second case there was also heat coming from the fric­

tion of the rotating ball-bearings. The temperature increase in the second case 
was about 8% while the mechanical energy produced was calculated to be about 10% 
of the input electric energy. 

One can see inrnediately that the ball-bearing motor has no back tension because 
there are no magnets, and the magnetic field of the current in the "stator" cannot 
in duce tension in the metal of the "rotor", 

Thus the firm conclusion is to be drawn that the mechanical energy delivered by 
the ball-bearing motor is produced from nothing, in a drastic contradiction with the 

energy conservation law. 

Fig. 96. Photograph of small and big ball-bearing motors. 
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With a direct current supply, the ball-bearing rootor can rotate either left or 

right. Thus it cannot be an electromagnetic rootor, since a d.c. electromagnetic mo­

tor rotates only in one direction, with a given direction of the current. The ball­

bearing rooter rotates with d.c. as .wellas with a.c. With a greater current it rota­

tes faster. 

At equal applied electrical powers and equal number and size of the balls (i.e., 

at equal resistance), the torque is bigger for a ball-bearing with bigger bore. A 

ball-bearing with two times bigger bore has two times bigger torque. Fig. 95 shows 

two ball-bearing rootors with a small and a large bore which have almost equal ohmic 

resistances ( of course, the mechani ca 1 friction of the bigger root or is greater). By 

touching both rootors, one can immediately feel the difference in their torques. The 

bigger b_all-bearing has greater. number of balls and consequently a bigger torque; 

however, its current (and power) consumption are higher. 

Methods of irrproving efficiency in the ball-bearing rotor include the following: 

1) The use of balls which are harder and where a smaller amount of heat leads to 

larger thermal extension. We know that normally a harder solid body has a lower co­

efficient of thermal dilatation, so that one has to find the optimal solution which 

nature offers. 

2) Tighter ball-bearings have a better pushing force. However, at the same time 

they will have more friction. A compromise is needed. But even if friction is very 

low, there is always a maximum velocity which the motor cannot surpass. At this ma­

xi mum velocity, heat from the "bulge" cannot be absorbed by the ba 11, and the ba 11 

retains more or less a spherical shape. It is obvious that the maximum velocity is 

higher for larger balls. 

3) The driving force is higher for bigger bores, as the curvature of the races is 

less. 

4) The driving force is greater for bigger balls, as their curvature is less. 

The report on 11\Y experiments with the different ball-bearing motors was published 

in Ref. 68. 

65. DITCHEV'S EXPERIMENT 

If filings are dispersed over a cardboard under which a magnet is put with one of 

its poles upwards, the filings form lines following the magnetic intensity B. From 

this observation official physics draws the conclusion that the magnetic field is 

something rea 1 as it can be "revealed by material objects". 

My friend H. Ditchev< 69 ) did the same experiment but instead cardboard he put over 

the magnet's pole a shallow dish filled with water. The fine filings formed circles 

on the water surface following thus the magnetic potential A (fig. 96). 

Thus it turns out that the magnetic potential is as "real" as the magnetic inten­

sity. Meanwhile both B and A can be found only in our heads. 
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Fig. 97. Ditchev's experirrent with iron powder disperced on water surface. 

66. THE MONSTEIN-WESLEY EFFECT 

Monstein(?O) carried out the following experiment: He set a cylindrical magnet 

rotate with a certain angular velocity about its axis once in one direction and once 

in the opposite one. Monstein observed that when letting then the magnet ·continue 

freely its rotation, the coasi:-down tirres for the one and the opposite rotations were 

different. The differences were not big (few percents of the total coast-down tirre) 

but they were definitely asymmetric and could be clearly distinguished from the or­

dinary stochastic differences whose sums (for many experirrents) must give zero. 

When the magnet has been set to rotate positively, i.e., anti-clockwise, and lo­

oked to its south pole, the coast-down tirre was always longer than the coast-down 

time when the magnet was set to rotate negatively. 

To the best of my knowledge, t-bnstein was the first one of having observed this 

effect. 

This effect is of the kind of the Barnett and de Haas -Einstein effects which I 

should like to present first shortly. 

The magnetism of the magnetics is due to the orientation of the elerrentary mag-
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netic dipoles of the electrons along a preferred direction (see Sect. 20.2 and 32). 

As the electrons have negative charge and they have strictly defined angular velo­

city of rotation along sane of their symnetry axes, then if their dipole magnetic 

ironent along this axis has a south magnetic pole upwards, the rotation of the elec­

tron, when looking to it from up, will be positive (anti-clockwise). Indeed, in 

this case the "positive" charge of the electron rotates clockwise and according to 

the we,ll-known rule, there must be a south pole upwards. 

As the electron has a certain mass, its rotation with a definite angular veloci­

ty will determine also its own angular ironentum, called spin (see Sect. 20.2). This 

angular ironentum, obviously, will point in the direction in which the south pole of 

the electron's dipole magnetic ironent points. 

The BARNETT EFFECT(7l) is the following one: When a cylindrical magnetic is set in 

rotation, it becones magnetized, nanely, if the rotati~n is positive (anti-clock­

wise), the magnetic obtains a south pole upwards. The explanation is as follows: 

The electrons represent small gyroscopes and when the whole body is set in rotation 

these gyroscopes search to orient the vectors of their rotational velocities 

along the vector of the angular velocity of the whole body. Barnett deironstrated 

this effect(7l) with the help of the gyroscopic irodel presented in fig. 98. This 

gyroscope differed from a comiron type of gyroscope only in the addition of the 

two springs SS ( taken as rubber bands) and the arrangenent for their attachenent. 

The gyroscope's wheel, pivoted in a ring, could be rotated rapidly about its axis 

A. Except for the action of the springs, the ring and the axis A were free to irove 

in altitude about a horizontal axis B, the axis A making thus an angle e with the 

vertical axis C, while the axis 8, together with the wheel and the frarrework sup­

porting it and the springs, could be rotated about the vertical axis C. If the 

Fig. 98. Barnett's derronstrational gyroscope which is rotated as a whole. 
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wheel was spun rapidly about the axis A and the instru11Ent was then rotated about 

the vertical C slowly, so that the centrifugal forces were negligible, the wheel 

tipped up (or down) so as to make the direction of its own rotation coincide rrore 

nearly with the direction of the irrpressed rotation about C, thus to diminish (or 

increase) the angle e. Tne greater the rotary speed about C the greater the tip of 

the whee 1. 

Thus we conclude that at positive rotation of the cylindrical magnetic rrore elec­

trons wi 11 have spins' corrponents upwards than downwards and the body wi 11 be mag­

netized with a south pole upwards. 

The DE HAAS - EINSTEIN EFFECT(72) is the following one: When a cylindrical mag­

net is magnetized by a current pulse, it obtains a small torque, na11Ely, if the mag­

netic is magnetized with south pole upwards, the torque is negative (clockwise). 

The explanation is as follows: At the magnetization of the magnetic with -south 

pole upwards, more electrons arrange their spins upwards. The law of angular rro11En­

tum conservation requires that the magnet obtains an opposite "spin", i.e., a posi­

tive torque. The sa!IE effect appears when a magnet will be demagnetized and can be 

cal led the inverse de Haas - Einstein effect. 

The explanation of the effect observed by Monstein was given by Wesley( 73) and 

for this reason I cal 1 it the MONS TE IN - WESLEY EFFECT. 

Wesley considers the electron not as a sphere or ring of mass "1e and radius r ro­

tating with an angular velocity w about an axis, but as a point mass 'Ile rotating 

with an angular velocity w at a distance r about an axis. Since then an averaging 

in tillE will be made, both these models must lead to identical results. 

Let the distance of the electron from the axis of magnetization of the cylindri­

cal magnet, which will be also its axis of rotation with the low (with respect to 

w) angular velocity n, be R. The position of the electron as function of tillE in the 

xy-plane of a cylindrical fra!IE of reference is given by its radius vector 

r' = {Rcosnt + rcos(w ± fl)t}x + {Rsinnt + rsin(w ± fl)t}y, (66.1) 

where the upper sign is to be taken when the spins of the electron and the magnet 

coincide,and the lower sign when they are opposite, and fort= 0 the electron is on 

the x-axis. 

Differentiating (66.1) with respect to ti!IE, we find the velocity of the electron 

V = - {nRsinnt + (w ±n)rsin(w ± n)t}x + {nRcosnt + (w ±n)rcos(w ± fl)t}y. (66.2) 

The kinetic energy of the electron will be 

(66.3) 

The kinetic energy of the electron averaged in tillE (what is the effective value 

which can be eventually observed) will be· 

ek = mev
2

/2 = (me/2){n
2

R
2 

+ w
2

r
2 

+ n
2

r
2

} ± np$' (66.4) 
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where 

(66. 5) 

is the angular momentum of the electron which is independent of its rrodel (spinning 

sphere-, ring, or mass point rotating about an axis). 

The sign-ificance of the result (66.4) is that the last term can change sign de­

pending upon the direction of rotation n. 
If Mis the total mass of the magnet and N is the nurrter of the spinning elec­

trons, then the net kinetic energy of the rotating cylindrical magnet of radius R0 

is given by 

(66.6) 

where J is the rrorrent of inertia of the magnet about the axis of rotation, Pq, is the 

own angular morrentum of all electrons which generate magnetism of the magnet as a 

whole and we assurred that the nurrter of these electrons for the two opposite rota­

tions is the same (as we shall see beneath this nurrter is not the same). 

Thus the kinetic energy of the magnet for "right" and "left" rotation with the 

sarre angu.lar velocity n is not the same: If the angular velocity n has the same di­

rection as the spinning velocities of the electrons, the kinetic energy of the spin­

ning magnet as a whole will be greater. Consequently when the magnet wi 11 be rotated 

in this direction and then left to spin freely, the coast-down time will be longer. 

As the spins of the electrons are positive when looking at the south pole of the 

magnet, then if rotating the magnet with south pole up in the positive (anti-clock­

wise) direction, the coast-down time will be longer than if the magnet will be rota­

ted in the negative (clockwise) direction. 

This effect was observed by Monstein. 

When looking to the south pole of the magnet and rotating it positively, the mag­

netic intensity increased with 19 µT for 1 m/sec velocity of the periphery of the mag­

net, and the coast-down tirre was with 2% greater than the middle (ri ght+left) coast­

down time. When the magnet was rotated negatively, the magnetic intensity decreased 

with 29 µT/(m/sec) and the coast-down time was with 2% less. 

In his paper( 73 ) Wesley finds easily a formula according to which one can, pro­

ceeding from Monstein 's experimental data, calculate the intrinsic angular moment of 

the "magnetizing" electrons P,p. 

67. THE PERPETUUM MOBILE TESTATIKA 

The machine TESTATIKA constructed by Paul Baumann some 15 years ago is, according 

to the best of l1lY knowledge, the first and still the only perpetuum mobile in our 

world. 

The story of TESTATIKA is huge, nJYStic, interesting and I dedicated to it the 

fifth volurre of the series THE THORNY WAY. OF TRUTH(54 )_ Here only a couple of words. 



- 269 -

Paul Baumann is the spiritual head of the 0,ristian religious community METHERNI­

THA in Switzerland which has some 500 mentiers in the European.countries (since 1989 

I am mentier of the coll'lllunity). Born in a poor Swiss peasant family, Paul Baumnn be­

gan• to earn his bread at the age o·f twelve (now he is seventy) and has •not visited 

schools. God has given him an amzing intellect, or something more, as, according 

to me, the machine TESTATIKA is constructed rather by inspiration than by brain. 

It is an electrostatic influence machine of the kind of the WIMSHURST MACHINE 

which mintains its motion alone and delivers huge amounts of free energy. 

The first small prototypes are with one rotating wheel, as the machines shown in 

figs. 99 and 100. The middle and big mchines are with two counter-rotating wheels 

(as the Wimshurst machine). 

The small machines inspected by me deliver some 200 W free energy in the form of 

direct current, the middle machines (with disks' diameter of 50 cm) deliver about 

3 kW and the gigantic machine with disk's diameter 2·m (see its photograph in Ref. 

74), which is still in construction, will deliver 30 kW. 

The machines are set in rotation by hand (~ven by finger) and then they maintain 

their motion alone. The rotation rate of all machines is about l rev/sec. The mecha­

nical power of the machines is only a very small fraction of the delivered electri­

cal power. 

Fig. 99. Photograph of the small machine TESTATIKA with one rotating wheel. 
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Although having inspected two of the machines, setting the one in notion and 

stopping it, the secret of TESTATIKA is not clear to rre. It is evident that these­

cret is extrerrely sirrple (of the kind of the "secret" of SIBERIAN COLIU), 

but nobody of the thousands of people who have seen the machines has revealed it. 

The machines TESTATIKA are property of the community METHERNITHA, where people 

live on the principles of a pure and genuine Christian communism. In the opinion of 

the community, humanity is not ripe for such a source of inexhaustible energy. The 

secret of TESTATIKA wi 11 be made public only if humanity will grasp that the only 

way to survive in our highly technological epoch, when man has in his possession 

terrible powers, is to begin to live in hunbleness, in love and solidaroty with the 

other people, the animals, the plants. 

I tried to organize a visit of A. D. Sakharov of the community but as he was scep­

tical(75) that such a source of energy may exist, rqy endeavours did not bring fruits 

(see the documentation on P\Y efforts in organizing Sakharov's visit in the last vo­

lumes of the series THE THORNY WAY OF TRUTH). 

At a rreeting of the active of the community, called forth by me, for discussing 

the problem whether the secret of TESTATIKA is to be revealed, of the 23 attending 

people I was the only one who voted "for". 

I am for the revelation of the sources of free energy to mankind if this energy 

is clean and non-destructive. Free energy will solve many problems of mankind but, 

of course, not all. I think, it will be easier to search for God and for Christian 

Communism with free energy in the hands than without it. 

Fig. 100. Inspecting two 
of the small TESTATIKA 
machines. 
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LIST OF SYMBOLS 

A magnetic (magretic) potential 

B magnetic (magretic) intensity 

Bpot poten~ial magnetic intensity 

Brad radiation magnetic intensity 

Brea radiation reaction magnetic intensity (= 0) 

C lig,t velocity 

C capacitance 

d electric dipole moment 

D electric displacement 

e ti me energy 

ek kinetic energy 

el low-velocity time energy 

E electric intensity 

Epot potential electric intensity 

Erad radiation electric intensity 

Erea radiation reaction electric intensity 

Ecoul Coulonb electric intensity 

Etr transformer electric intensity 

[root motional electric intensity 

~hit 1-,hittaker electric intensity 

Enic Nicolaev electric intensity 

Egloo global electric intensity 

f kinetic force 

f full kinetic force 

F potential force 

r full potenti a 1 force 

G conductance 

Gm permeance 

6 gravitati ona 1 intensity 



h Planck constant 

H full energy 

H total energy 

H (magnetic intensity) 

imaginary unit 

electric current 
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I electromagnetic energy flux density 

j space electric current 

j tirre electric current 

J roorrent of inertia 

J electric current density 

k circular wave nunber 

1< wave scalar (wave nunber) 

k wave vector 

11. linear wave vector 

1 angular roorrentum 

L line (its length} 

L inductance 

m mass 

in full mass 

m* Mari nov mass 

m magnetic dipole roorrent 

M roorrent of force 

M magnetization 

n nunberofparticles in a system 

n nunber of windings on a unit of length 

n unit vector along sorre direction 

N nunber 

N rate of rotation 

p (space) morrentum 

P ti n-e mon-entum _ 
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p full morrentum 

P power 

P energy fl ux 

P electric polarization 

q electric charge 

q* Mari nov electric charge 

Q electric charge density 

r distance, radius 

r radius vector, vector di stance 

R radius 

R rns is tance 

Rm reluctance 

S surface ( its area) 

S action 

S scalar magnetic intensity 

S density of electromagnetic energy 

S Poynting vector 

t ti rre 

T period 

u acceleration 

U space energy (electric, Ue' gravitational, Ug) 

U electric tension 

Um magnetic tension 

v velocity 

V volume 

V velocity of laboratory in absolute space 

W space-time energy (magnetic, We, magretic, Wg) 

x abscissa 

x unit vector along the abscissa 

y ordinate 



Y unit vector along the ~rdinate 

z applicate 

i _unit vector along the applicate 

Z i mi:edance 

a initial phase 

y gravitational constant 

y conductivity 

E energy dens i ty 

E permittivity 

E
0 

electric constant 

e zenith angle 

>- wavelength 

µ mass density 

µ permeability 

µ
0 

magnetic constant 

v frequancy 

-. momentum density 

p polar radius 

p resistivity 
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P unit vector along the polar radius 

i: surface charge density 

T period of a particle 

4> azimuth angle 

<j, phase angle 

~ unit vector perpendicular top 

~ electric (gravitational) potential 

~ magnetic flux 

x electric susceptibility 

Xm magnetic susceptibility 
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w circular frequency 

g angular velocity 
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Acceleration 

universal - 23 

first proper - 24 

second proper - 24 

ACHMAC machine 189 

Action 18 

ADAM machine 193 

d'Alerrbert operator 23 

Ampere 149 

- formula 82 

bridge 

propulsive - - 88 

ci re u 1 a r - - - 88 

half-circular- - - 88 

rotating - - 99 

SUBJECT 

- - - experiment 224 

autononDus - - - - 226 

arm of - - 88 

shoulder of - - 88 

Ball-bearing 11Dtor 261 

Battery 60 

Barlow disk 174 

cemented - - 174 

uncemented - - 174 

Bamett effect 266 

Bohr magneton 114 

BUL-CUB machine 181 

uneffective - - 184 

effective - - 184 

- - without stator 257 

Capacitance 52 

Capacitor 60 

ideal - 60 

Charge 

electric - 19 

bound - - 64 

free - - 64 

1 NV EX 

- of electron 20 

Cel 1 60 

Centi meter 144 

natura 1 - 143 

Clock 

light-14 

uni versa 1 - 2 3 

proper - 23 

Cai 1 58 

Condenser 52 

Conductance 49 

Conductor· 49, 64 

Constant 

_gra vi tati ona 1 - 19 

electric - 19 

inverse - - 19 

ma greti c - 20 

magnetic - 20 

Corona motor 220 

Caul orrb 149 

- 1 aw 19, 40 

Coupled mirrors experiment 155 

devi ati ve - - - 155 

interferometric - - - 155 

Coupled shutters experiment 155 

Current 

space - 19 

time - 19 

electric - 49 

- element 54 

displacement - 110 

polarization - 111 

eddy - 214 

Oensi ty 

mass - 36 

momentum - 36 

o - 37 

charge_ - 39 



current - 39 

energy flux - 46 

magnetic flux - 59 

Diamagnetic (medium) 6 7 

Dielectric 64 

Di po 1 e 

electric - 113 

- - moment 112 

magnetic - 65 

- - moment 113 

- radiation 136 

Displacement 

electric - 65 

- current 95 

- - density 45 

Distance 

universal - 38 

proper - 38 

second - - 39 

advanced - 42 

observation - 42 

retarded - 42 

Di tche v - 264 

Effects 

electric - 69 

magnetic - 69 

electromagnetic - 69 

Electret 68 

Electromagnet 65 

Electron 

mass of - 19 

charge of - 20 

Elements of motion 

advanced - - - 101 

observation - - - 101 

retarded - - - 101 

Energy 6 

magretic - 13, 20 

universal - - 20 

proper - - 20 
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- sys tern 16 

universal (time) - 18 

proper (time) - 18 

gravitational - 19 

universal - - 19 

proper - - 19 

electric - 19 

magnetic - 20 

full - 20 

total - 20 

kinetic - 24 

ti me - 24 

first proper - - 18 

second proper - - 18 

low-velocity - - 15 

potential - 26 

world - 32 

- flux 46 

- - density 46 

mechanical - 60 

Erg 144 

natura 1 - 143 

Erma operator 23 

Ewing effect 215 

Exponential form 

short -' - 126 

lapidary 126 

long - - 126 

FAB machine 185 

Faraday 

- law 62 

- disk 174 

cemented - - 174 

uncemented - - 174 

- Barlow machine 185 

Ferromagnetic (medium) 67 

Field 

constant electromagnetic - 108 
. Flux 

energy - 38 



magnetic - 53 

- - density 66 

Force 

k i.neti c - 25 

universal - - 25 

first proper - - 25 

second proper - - 25 

proper full - - 29 

potential - 27 

full - - 29 

electrorrotive - 60, 75 

seat of the - - 178 

ponderorroti ve - 75 

seat of the - - 178 

coercive - 68 

magnetorroving - 68 

magnetic - lines 72 

radiation reaction - 138 

Four-tensor 23 

Four-vector 23 

Frame 

absolute - 14 

relative - 14 

Frequency 

ci rcu la r - 125 

linear - 211 

Gali lei 

- transformation 21 

direct - - 21 

inverse - - 21 

Gauge transformation 76 

function 76 

Gauss system of units 133 

Generator 107 

8 - 107 

S - 107 

Gram 144 

Graneau 

- explosions of wires 233 

- submarine 237 

- 281 -

Grassmann formula 82 

de Haas - Einstein effect 267 

Hamilton 

- ti me energy 18 

- operator 23 

Heat 50 

Hering experiment 233 

Horro geneity 

- of space 17 

- of time 17 

Hysteresis 6 7 

- loop 68 

- lasses. 68 

Image of material system 16 

equivalent - - - - 16 

adequate to physical reality - - - - 16 

Irrpedance 203 

Inductance 53 

mutual - 57 

self - 57 

Induction 

electrostatic - 64 

magnetic - 66 

residual 68 

remanent 68 

electromagnetic - 75 

rrotional - 75 

Whittaker - 75 

moti ona 1-trans former - 75 

rest-transformer - 65 

Inductor 60 

ideal - 60 

Insulator 64 

Intensity 

gravitational - 33 

global - - 34 

restricted - - 34 

(vector) magretic - 33 

scalar magretic - 33 



electric - 34 

global 34 

restricted - - 34 

driving - - 49 

induced - - 62 

Coulont - - 70 

trans forrrer - - 70 

rrotional - - 70 

Whittaker - - 70 

rest-transforrrer - - 70 

motional-transfprnEt 

Nicolaev - - 85 

induced forth 105 

potential 120 

radiation 120 

70 

radiation reaction - - 120 

(vector) magnetic - 34 

potential 120 

radiation 120 

ra~ation reaction - - - 120 

scalar magnetic - 34 

coercive - - 68 

Isotropy of space 17 

Kennard experirrent 72 

quasi - - 16 7 

Ki:ini g-Ma ri nov motor 19 3 

Lagrange 

- tirre energy 18 

- equations 27 

full - - in gravimagretism 28 

full ~ - in electromagnetism 29 

Laplace operator 23 

Length contraction 15 

Lenz 

- effect 205 

morrentary - - 205 

normal - - 205 

integral 205 

zero - - 205 
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anti - - 205 

morrentary - - - 205 

integral - - - 205 

- rule 207 

Lienard-Wiechert potentials 43 

Light clock 14 

Light velocity 

universal - - 18 

proper - - 18 

relative 18 

Lorentz 

- invariance 15 

- transformation 21 

direct - --21 

inverse - - 21 

- tirre 22 

- gauge condition 34 

- equation 82 

- frictional force 138 

Machine 

electromagnetic - 174 

nonpolar - - 174 

half polar - - 174 

open - - - - 174 

closed - - - - 175 

homopolar - - 174 

unipolar - - 174, 175 

- - - with MLiller ring 175 

- - - with Marinov ring 175 

one-and-a-half polar - - 176 

two polar - - 176 

Magnet 65 

permanent - 68 

Magnetic (rredi um) 66 

Magnetization 66 

MAMIN C0LIU machine 195 

MAMUL machine 190 

Mari nov 

aether JTDde l 13 

- invariance 15 



- law 20 

- mass 20 

- electric charge 20 

- . ti me energy 18 

- razor 56 

- ring 175 

- Killer machine 190 

Mass 

universal - 18 

proper - 18 

- of electron 19 

full - 29 

test - 31 

Material system Hi 

model of - - 16 

image of- - 16 

identical - - 16 

isolated - - 17 

Matter 16 

Ma xwe 11 

- Marinov equations 43 

first pair of- - - 43 

second pair of - - - 44 

- Lorentz equations 44 

first pair of - - - 44 

second pair of - - - 44 

Medi um 49 

diamagnetic - 67 

non-magnetic - 67 

pa rarm gneti c - 6 7 

ferromagnetic - 6 7 

Metherni tha 269 

M0DRIL0 motor 245 

Moment 

- of force 36 

observation - 40 

advanced - 40 

retarded - 40 

Momentum 

space - 18 

universal - - 18 
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proper - - 18. 

law of conservation of - - 35 

time - 18 

universal 

proper - - 18 

full - 35 

18 

law of conservation of - - 35 

angular - 35 

proper - - 35 

law of conservation of - - 36 

Monstein-Wesley effect 267 

Motor 

electromagnetic - 102 

B - - 102 

S - - 102 

t,Uller 

- ring 175 

- machine 178 

Nicolaev 

- formula 85 

- electric intensity 85 

- first experiment 238 

- second experiment 239 

- third experiment 240 

- fourth experiment 240 

- fifth experiment 241 

- sixth experiment 242 

- seventh experiment 243 

- eighth experiment 245 

N-machine 195 

Neumann 

- law 20 

- formula 57 

Newton 

- aether model 13 

- law 19 

- equations 27 

full - - 20 

- second law 27 

- th i rd l aw 2 7 

full - - - 29 



- potentia 1 force 29 

- proper kinetic force 29 

- rrass 29 

- Mari nov equation 31 

- Lorentz equation 34 

abso·1 ute - - - 79 

relative - - - 79 

- in Whittaker form 85 

in Nicolaev form 85 

Ohm 

- law 49 

- tension 62 

Paramagnetic (medium) 67 

Particle 18 

~riod-113 

proper - 19 

Permeance ·59 

Permeability 66 

Permittivity 65 

Phase 125 

- angle 203 

Phenomenological approach 49 

Photon 

electromagnetic - 115 

gravimagretic - 115 

Physics 

classical - 13 

low-velocity - 13 

high-velocity - 13 

Planck constant 18 

Point 

rra te ri a 1 - 18 

reference - 30 

Pol a ri zati on 

electric - 64, 65 

- - by induction 64 

dielectric - 64 

molecular - 64 

- current 96 

Po le 65 
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north - 65 

south - 65 

Potenti a 1 

gravitational - 30 

magretic - 30 

electric - 30 

magnet i c - 30 

equation of - connection 34, 35 

advanced - 40 

retarded - 40 

Power 42 

Poynting vector 46 

Principle of equivalence 32 

Pr i n c i p 1 e of re 1 at i vity 2 1 , 7 D 

Quadrupo 1 e 

electric - moment 113 

RAB machine 224 

RAF machine 225 

Reactance 

inductive - 203 

capacitive - 207 

Reference point 22 

Reflectivity 

- of space 17 

Re 1 uctance 69 

Resistance 50 

Resistivity 50 

Resistor 60 

ideal - 60 

Resonance 208 

Reversi bi 1 ity 

- of time 17 

Rowland experiment 169 

direct - - 169 

inverse - - 169 

rotational - - 169 

inertia 1 - - 169 



Seat 

- of induced electric tension 178 

- of electroiootive force 178 

- .of ponderoooti ve force 178 

Second 144 

natural - 143 

Semi-,conductor 64 

SIBERIAN C0LIU machine 248 
Si galov 

- first experiment 93 

- second experiment 231 

- third experiment 232 

Skin effect 56 

Solenoid 58 
infinite - 59 

Source of electric tension 60 

ideal - - - - 60 

Space 17 

absolute - 17 

Spin of electron 66 

Standard 

measuring - 141 

Susceptibility 

electric - 65 

magnetic - 66 

Super-acceleration 

universal - 24 
first proper - 24 

second proper - 24 

third proper - 24 
Super-conductor 50 

System. 

static - 36, 108 

quasi-static - 36, 108 

dynamic - 36, 108 

stationary - 108 

q uas i-stati ona ry - 108 

periodic - 108 

quasi-periodic - 108 

nDnoperiodic - 125 

po lyperi odi c - 127 

- 285 -

- of uni ts 141 

natural - - - 142 

Gauss - - - 143 

electromagnetic - 150 

electrostatic - - 150 

absolute - - - 150 

rationalized - - - 149 

international - - - 149 

SI - - - 149 

Tension 

electric - 45 
dri vi n g - - 49 , 6 0 

induced - - 62 

seat of - - - 178 

- forth - - 105 

- back - - 105 

magnetic - 68 

TESTATIKA machine 268 

Time 17 

- unit 14 

proper - - 14 

universal - - 14 

- dilation 14 

relative - 22 

- constant 61 

Torque 36 

Torus 68 

Trans for11er 196 

Turn 58 

Unit of measurement 141 

natural - - - 18 

Gauss - - - 134 

Velocity 

universal - 23 

proper - 23 

tine - 25 

proper - - 25 

drift - 50 

energy - 51 



VENETIN C0LIU machine 202 

Voltage 60 

Wave 

- ve_ctor 19 

universal 19 

proper - - 19 

- sea lar 19 

universal - - 19 

proper 19 

length 19 

proper - - 19 

electromagnetic - 115 

scalar - - 115 

- n urrber 125 

gravimagretic - 140 

Whittaker formula 82 

Wimshurst machine 82 

Winding 58 
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I MP RO RT ANT INFORMATION ADDED IN PROOF 

In fig. 101 I present the proposal of the most simple SIBERIAN COLJU machine 

which, if put at low (nitrogen) tempertaures will run as a perpetuum nubile. I call 

this machine SIBERIAN COLIU II, while SIBERIAN COLIU I will be called the machine 

shown in fig. 88. 

To grasp nore quickly the principle of action of SIBERIAN COLIU II, compare figs. 

10land86: 

On the strong permanent magnet (which is cut along its diametral plane and then 

one of its halves is turned up-down) three plastic rings are put. The lower and up­

per plastic rings are encircled by two ball-bearings (called further "the big ball­

bearings") whose outer races are encircled by copper rings (the "big copper rings") 

with considerable cross-section (for decrea~ng their ohmic resistances). The middle 

plastic ring supports two antipodal axles, on which two ball-bearings (the "small 

ball-bearings") are put, the outer races of which are encircled by copper rings (the 

"small copper rings") with smaller but still considerable cross-section. 

N s 

I-

E2Z2LJ Cu 

~ PVC 

s N 

c=J Fe 

Fig. 101. Drawing of the machine SIBERIAN COLIU II (perpetuum nobi le without a 
single screw!). 
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When rotating the lower big copper ring anti-clockwise, because of the friction 

between the copper rings, the upper copper ring corres in clockwise rotation. 

As shown in Sect. 60 (see also fig. 83), at the- indicated polarities of the mag­

nets a_nd at the indicated rotation of the big copper rings, the current induced in 

the two half-circular parts of the upper copper ring will be from left to right, 

while the current induced in the two half-circular parts of the lower copper ring 

wi 11 be from right to left. Any of these induced currents wi 11 support the rotation 

of the rings. Thus if the driving torque caused by the interaction of these currents 

with the "radial currents" in the magnets wi 11 be equal to the friction 

torque, the machine will rotate eternally. 

The only condition for running this machine as a perpetuum rrobile is that the 

ohmic resistances of the four copper rings (together with the resistances of the 

rolling contacts) should be low enough, so that enough current should be induced. 

Thus if the machine will _be put at nitrogen teJTflerature and will be set at ini­

tial rotation by an external motor by friction (see fig. 59), then, after decoupling 

the driving motor, it will continue to rotate alone. The external rrotor can be then 

used as artificial "friction torque" by the help of which an eternal rotation can 

be maintained. 

As I have no liquid nitrogen dispositions in J1JY laboratory (my laboratory is my 

sleeping room), it will be impossible for rre to observe the eternal rotation of SI­

BERIAN COLIU II. On the other hand, as until the present day the representatives of 

official physics have not granted even a single screw for J1JY research, I hardly be­

lieve they will offer rre hospitality in their low-temperature laboratories (the 

thousands of hours which I lost in hopeless submission of papers to the journals of 

the official physicists and the kicks on J1JY bottom when visiting their congresses 

were a good lesson to search no rrore collaboration with the scientific establish­

rrent). 

Thus I am addressing the readers of this book who have an access to low-tel1'4Jera­

ture dispositions to put the machine SIBERIAN COLIU II at nitrogen (or, perhaps, he­

lium) temperature and to observe the eternal rotation. 

SIBERIAN COLIU II can be constructed in a. single day. Taking however into account 

that for sorre people the acquisition of the strong permanent magnet (and its cutting) 

may be a problem, I make the following announcerrent: 

Everybody can obtain from me (in no more than in a week) the following items: 

1) Permanent cylindrical strong magnet cut in two pieces as the one shown in fig. 

68. Price: 21,000 AS = 3000 DM = 2100 Z. 

2) The machine SIBERIAN COLIU II as indicated in fig. 101. The machine is still 

nor costructed but I can do this in a week. Price: 35,000 AS= 5000 DM = 3500 $. 

3) The n~chine SIBERIAN COLIU I (fig. 68). Price: 70,000 AS= 10,000 DM = 7000 $. 

Note: Mercury is hermetically closed in its trough and there are no hygienic 

problems at transport and use. 
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I shall try to run SIBERIAN COLIU II at room te~erature or putting it in refri­

girator for meet (ordinary people have always generously supported 11\Y research!). 

The right small copper ring with its ball-bearing can be pushed to the right on its 

axl!! and so the net tension induced at the rotation of both big copper r_ings can be 

measured; The ball-bearings have to rotate .loosely enough, so that the friction will 

be lowest possible. If the pressure on the rolling contacts will be not enough, the 

upper big copper ring is to be made more massive. 

As, however, I tore off 11\Y Achilles tendon and can walk only with clutches (see 

fig. 102), TJlY experimental activity is substantially handicapped. 

Fig. 102. On the way to eternal motion (or eternal rest!?). 
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